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“When one tries to depict the figure formed by these two curves
and their infinity of intersections, each of which corresponds to
a doubly asymptotic solution, these intersections form a kind of
net, web or infinitely tight mesh; neither of these two curves can
ever cross itself, but must fold back on itself in a very complex
way in order to cross the links of the web infinitely many times.
One is struck by the complexity of this figure that I am not even
attempting to draw. Nothing can give us a better idea of the
intricacy of the three-body problem, and of all the non-integrable
problems of dynamics in general.”
(H. Poincaré, New Methods of Celestial Mechanics, 1899)

“What is it indeed that gives us the feeling of elegance in a solution,
in a demonstration? It is the harmony of the diverse parts, their
symmetry, their happy balance; in a word it is all that introduces
order, all that gives unity, that permits us to see clearly and to
comprehend at once both the ensemble and the details.”
(H. Poincaré, Science and method, 1908)
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Abstract

This thesis is a collection of the work carried out during these three years of
PhD at the Department of Mathematics with the Celestial Mechanics Group
and at SpaceDyS, a spin-off of the group itself.

The central theme of this thesis is the impact monitoring of Near-Earth
Asteroids (NEAs). The NEA population includes asteroids in a heliocentric
orbit having perihelion distance q ≤ 1.3 au. When an asteroid has just been
discovered, its orbit is weakly constrained by the available astrometric obser-
vations and it might be the case that an impact with the Earth in the near
future, e.g., within the next 100 years, cannot be excluded. If additional ob-
servations are obtained, the uncertainty of the orbit shrinks and the impact
may become incompatible with the available information. Thus a crucial
issue is to be able to identify the cases that could have a threatening Earth
close encounter within a century, as soon as new asteroids are discovered or
as new observations are added to prior discoveries. The main goal of impact
monitoring is to solicit astrometric follow up to either confirm or dismiss
the announced risk cases, i.e. asteroids having some virtual impactor (VI)
(Milani et al. 2000). This is achieved by communicating the impact date,
the impact probability and the estimated impact energy.

This activity required an automated system that continually monitors
the NEA catalogue. clomon-2 and Sentry are two independent impact
monitoring systems that have been operational at the University of Pisa
since 1999 and at JPL since 2002, providing the list of asteroids with a non-
zero probability to impact the Earth within a century. The results of the
two systems are carefully compared, and this guarantees that the potentially
dangerous objects are identified very early (within a few hours from the
dissemination of the astrometric data) and followed up until the observations
succeed in contradicting the possibility of an impact. The mathematical
theory developed to deal with the impact monitoring problem is mainly
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contained in Milani et al. (1999), Milani et al. (2000), Milani et al. (2000),
Chesley et al. (2002), Valsecchi et al. (2003), and Milani et al. (2005b). Since
it is a recently studied problem, impact monitoring offers several interesting
topics to investigate or improve. The aim of this thesis is to deal with some
of them.

Chapter 1 is an introduction to the problem of impact monitoring and
also contains a review of the general theory needed for the whole thesis. In
particular, in Section 1.2 we introduce the risk scales used to quantify the
risk posed by the possibility of an asteroid impact. The next two sections are
devoted to the history of impact monitoring, from the first cases of hazard
analysis at the end of the nineties, to the famous “Apophis crisis” on 2004
Christmas Day. In the last part (Section 1.5) we outline the mathematical
theory needed to solve the problem, and on which clomon-2 and Sentry
are currently based.

In Chapter 2 we present the problem of imminent impactors, which es-
sentially is impact monitoring applied to Very Short Arcs (VSA). A very
short arc is a set of few observations over a short time span, typically 3–
5 observations spanning 1 hour (Milani et al. 2004). The difficulty when
dealing with VSAs is that they are often too short for a full orbit deter-
mination. Nevertheless, since such a set of observations could belong to a
real moving object, the problem of a short term impact monitoring actually
exists and needs to be solved. Furthermore, there exists two small NEAs
that have really impacted the Earth a few hours (less than 1 day) after their
detection, namely 2008 TC3 and 2014 AA, showing that a dedicated impact
monitoring system for very short arcs is needed.
We have developed an initial orbit determination method, based on system-
atic ranging (Chesley 2005; Farnocchia et al. 2015c), an orbit determination
technique that systematically explores a suitable grid in the topocentric
range and range-rate space, and on the Admissible Region theory (Milani
et al. 2004) to take into account the information contained in the short arc,
although little. The combination of the two techniques provides a robust
short term orbit determination method, which ends with the computation
of a sampling of the Manifold Of Variations, a 2-dimensional compact man-
ifold parametrized over the Admissible Region. The Manifold Of Variations
represents the 2-dimensional analogue of the Line Of Variations (LOV), thus
it is used to sample the set of possible orbits as a starting point for the short
term impact monitoring.
One of the main problems in the impact risk assessment for imminent im-
pactors is given by the computation of the impact probability. The second
main results contained in Chapter 2 are a new mathematical method to
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propagate the probability density function from the space of the astrometric
residuals to the Manifold Of Variations and then to the range and range-rate
space R. In previous works, this computation was conducted with the as-
sumption of an a priori probability density function on the space R, and this
step was needed to pass from the probability density function on the residu-
als space to a probability density function on the space R (see Section 2.5).
Our computation is complete, rigorous, and uses no a priori probability dis-
tributions, since it only assumes that the residuals can be modeled with a
Gaussian random variable.
This chapter corresponds to the paper Spoto et al. (2018), published on
the international journal Astronomy & Astrophysics. One of the steps in
the propagation of the probability density function is actually a further
improvement to the method and it is mainly contained in Section 2.5.

In Chapter 3 we present our progress in the study of the effect of non-
gravitational perturbations on an asteroid’s orbit. Non-gravitational pertur-
bations arise because outer space is not empty, but it is pervaded by elec-
tromagnetic radiation. Many non-gravitational perturbations are extremely
small, and yet can significantly affect a NEA trajectory. The Yarkovsky ef-
fect is due to the recoil force undergone by a rotating body as a consequence
of its anisotropic thermal emission (Vokrouhlický et al. 2000; Vokrouhlický
et al. 2015a). The main manifestation of the Yarkovsky effect is a secu-
lar semimajor axis drift da/dt, which leads to a mean anomaly runoff that
grows quadratically with time. Typical values of this perturbation for sub-
kilometre NEAs are da/dt ' 10−4-10−3 au/My. Because of its small size,
the Yarkovsky effect can only be detected for asteroids with a well con-
strained orbit. Several efforts have been done in modelling and determining
the Yarkovsky effect on the NEA population. Nugent et al. (2012) provided
a list of 13 Yarkovsky detection, and later work increased this number to
21 (Farnocchia et al. 2013). The most recent census is from Chesley et al.
(2016), which identified 42 NEAs with a valid Yarkovsky detection. Both
Farnocchia et al. (2013) and Chesley et al. (2016) flag spurious cases based
on whether the detected drift is compatible with the physical properties of
the corresponding object and the Yarkovsky mechanism. Since the num-
ber of significant Yarkovsky detections in the NEA population is steadily
increasing, we decided to update the list.
In this chapter, we present an updated set of near-Earth asteroids with a
Yarkovsky-related semimajor axis drift detected from the orbital fit to the
astrometry. We find 86 reliable detections after filtering for the signal-to-
noise ratio of the Yarkovsky drift estimate and making sure the estimate
is compatible with the physical properties of the analysed object. Further-
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more, we find a list of 24 marginally significant detections, for which future
astrometry could result in a Yarkovsky detection. A further outcome of the
filtering procedure is a list of detections that we consider spurious because
unrealistic or not explicable with the Yarkovsky effect. Among the smallest
asteroids of our sample, we determined four detections of solar radiation
pressure, in addition to the Yarkovsky effect. As the data volume increases
in the near future, our goal is to develop methods to generate very long lists
of asteroids with reliably detected Yarkovsky effect, with limited amounts
of case-by-case specific adjustments. Furthermore, we discuss the improve-
ments this work could bring to impact monitoring. In particular, we exhibit
two asteroids for which the adoption of a non-gravitational model is needed
to make reliable impact predictions.
The content of this chapter corresponds to the paper Del Vigna et al. (2018),
published on the journal Astronomy & Astrophysics.

Chapter 4 concerns the completeness of the impact monitoring prob-
lem. The completeness limit indicates how efficient the search for virtual
impactors of an impact monitoring system is. Each virtual impactor repre-
sents a possibility for the asteroid to impact the Earth at a certain date and
with a certain probability. The generic completeness limit is a probability
threshold, such that every virtual impactor with an impact probability above
this value has to be detected (Milani et al. 2005b). An accurate measure
and a decrease of the completeness limit value are very important issues in
impact monitoring and we make improvements in both of them.
The completeness limit depends on the confidence region sampling: a goal of
this chapter is to increase the completeness without increasing the compu-
tational load, for which we propose a new method to sample the LOV with
respect to the previously one used in NEODyS. In particular, the step-size
of the sampling is such that the probability of each LOV segment between
consecutive points is kept constant and thus not uniform in the LOV pa-
rameter, since the probability density function on the LOV has a Gaussian
distribution. Moreover, the sampling interval has been extended to the larger
interval [−5, 5] in the LOV parameter and a new decomposition scheme in
sub-showers and sub-returns is provided to deal with the problem of dupli-
cated LOV points appearing in the same return. The impact monitoring
system clomon-2 has been upgraded with all these new features, resulting
in a decrease of the impact probability IP ∗ corresponding to the generic
completeness limit by a factor ' 4 and in an increase of the computational
load by a factor ' 2.
Since the generic completeness limit is an analytic approximation, we sta-
tistically investigate the completeness actually reached by the system. For
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this we used two different methods: a direct comparison with the results
of the independent system Sentry at JPL and an empirical power-law to
model the number of virtual impactors as a function of the impact proba-
bility. We found empirically that the number of detected virtual impactors
with IP > IP ∗ appears to grow according to a power-law, proportional
to IP−2/3. Several arguments provided in the chapter lead us to believe
that we have experimentally found a fractal property of the set of the ini-
tial conditions leading to impacts in the chaotic dynamical system of planet
crossing asteroids. An analytical model explaining this power-law is cur-
rently an open problem, but we think it is related to the way the number of
virtual impactors within a time trel from the first observed close approach
accumulates. We give an analytical model and we prove that this cumula-
tive number grows with a power-law proportional to t3rel. For this second
power-law we found a number-theoretical argument based on Farey fractions
(see Appendix B). However, for the connection between the two power-laws
we have not yet found a model, which we suspect to hide in properties of
the chaotic orbits of NEAs. The power-law allows us to detect a loss of
efficiency in the virtual impactors search for impact probabilities near the
generic completeness limit.
The content of this chapter corresponds to the paper Del Vigna et al. (2019),
that has been accepted for publication on the international journal Icarus.

In Chapter 5 we use the analytical Öpik’s theory to study the evolution
of the Line Of Variations at a close encounter. The model on which Öpik’s
theory of close encounters is based is a simplified version of the restricted,
circular, 3-dimensional 3-body problem (Öpik 1976). In fact, in the theory
it is assumed that, far from the planet, the small body moves on an unper-
turbed heliocentric Keplerian orbit. The effect of the encounter is modelled
as an instantaneous transition from the incoming asymptote of the plane-
tocentric hyperbola to the outgoing one, taking place when the small body
crosses the plane orthogonal to the small body unperturbed velocity vector
and containing the centre of the planet. This plane is called the b-plane.
The first part of the chapter contains a review of Öpik’s theory and of its
extension to near misses, as presented in Valsecchi et al. (2003), in which
the planetary encounter is studied in a suitable set of six coordinates. We
provide the equations for the pre-encounter and the post-encounter state
vector in this set of coordinates, and we also show the equations for the
Keplerian propagation until the next encounter. The problem is seen as a
mapping from the pre-encounter b-plane of a certain encounter to the pre-
encounter b-plane of the next one. We also present the study of resonant
returns on a given b-plane, providing the definition of resonant circles, which
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are the locus of points such that if the small body asymptote passes through
one of them it will have a fixed post-encounter semimajor axis. We end
the review by presenting the wire approximation (Milani et al. 2005b), that
mimics the behaviour of the LOV on the b-plane and, together with the
resonant circles, is a useful tool in the analytic study of collision possibilities
at subsequent returns.
The second part contains the new research in this field. As we already
pointed out, a planetary encounter acts as an instantaneous rotation of the
incoming velocity vector U to the outgoing velocity vector U′. In the frame-
work of the analytical theory, it is possible to show that the modulus of this
vector is conserved, that is U ′ = U . When we use the wire approximation for
the LOV, we are not considering a single small body approaching the planet,
but a whole line of fictitious small bodies. We are interested in studying the
deflection caused by the encounter to the small bodies belonging to the wire.
The conservation of U implies that the post-encounter planetocentric veloc-
ity vector U′ spans a sphere of radius U . We prove that the post-encounter
values of the angular variables accessible to a small body encountering the
planet on the wire lay on the circle resulting from the intersection of a cone
(whose aperture can be explicitly given), centred in the centre of the sphere,
and the sphere itself.
The paper Valsecchi et al. (2019) corresponds to the content of this second
part of Chapter 5, and has been submitted to the journal Celestial Mechanics
& Dynamical Astronomy.

In Chapter 6 we propose an adaptation of the semilinear method (Milani
1999) for the prediction of the impact corridor on ground for an asteroid that
have a non-zero chance of impacting the Earth in the future. The algorithm
starts from an orbit for which an impact on Earth is possible at some epoch
in the future (a virtual impactor representative orbit). Starting from it and
using the covariance of the nominal solution, the semilinear method provides
the boundary of the impact corridor on ground, corresponding to the portion
of the initial uncertainty region that leads to the impact.
Given a virtual impactor, the impact region boundary at altitude h and
confidence level σ is the result of the propagation of the intersection of the
virtual impactor with the boundary of the confidence ellipsoid, until the sur-
face at altitude h above the Earth is reached. The semilinear method starts
considering the impact map, that is the result of the composition between
the propagation until the impact time and the projection on the impact sur-
face. First the initial covariance is linearly propagated using the differential
of the impact map at the VI representative and then the linear approxi-
mation is exploited to select a representative curve on the boundary of the
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ellipsoid in the initial conditions space. Then a uniform sample of points
belonging to this curve is non-linearly propagated to obtain the boundary
corresponding to the semilinear prediction.
Furthermore, the method has been validated using the real observational
data of the well known past-impacted asteroid 2008 TC3 and also a restricted
dataset of Apophis. The comparison with the predictions performed with a
Monte Carlo approach shows a very good agreement and, as an improvement,
it consists of fewer propagations with respect to Monte Carlo approaches.
The content of this chapter corresponds to on-going research and to a paper
which is still in preparation.

Appendix A contains the equations for the transformation from the Mod-
ified Target Plane reference frame to the Target Plane reference frame, along
with its Jacobian matrix. In particular, this leads to the definition of a suit-
able set of Öpik elements, which are very important, being the coordinate
set used in the computations performed by clomon-2.

Appendix B contains the proof of the asymptotic growth of the number
of terms in the Farey sequences. In particular, if Fn is the n-th Farey se-
quence (i.e., the sequence of irreducible fractions between 0 and 1 whose
denominators do not exceed n, definition B.14), then |Fn| ∼ 3

π2n
2 and∑n

k=1 |Fk| ∼ 1
π2n

3, as n → +∞. This appendix is self-contained, thus
we report all the definitions and theorems which are needed to reach this
result, with their proof.

Appendix C contains a summary of definitions on manifolds in RN and
on integration on manifolds. In particular, we introduce the notion of volume
form, which is a tool used in Chapter 2 for probability computations.

Appendix D contains the mathematical theory at the basis of the orbit
determination problem, presented as a non-linear least squares problem.
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Chapter 1
An overview of the Impact
Monitoring

1.1 Motivations

The collision between the Earth and an asteroid can be described as an ex-
treme event. On one hand, it is extremely rare: although tons of material
enter the Earth’s atmosphere on a daily basis, humankind has not yet wit-
nessed the impact of a body belonging to the asteroid class. On the other
hand, the effects of such an impact could be extremely catastrophic: the
energy released in the process ranges from tens of Megatons (for 50 m bod-
ies) to millions of Megatons (for bodies with several kilometers in diameter),
reaching global consequences for asteroids with diameter greater than 1 km.

The extreme character of the impacts between the Earth and the aster-
oids makes it difficult for the general public to understand the true nature
of the problem we are facing. The fact that this type of collisions is rare
does not mean that they are impossible. In fact, there are evidences both
indirect (craters on the surfaces of the rocky celestial bodies, including the
Earth) and direct (collision of the comet Shomaker-Levy 9 with Jupiter in
1994) showing that this kind of episodes have occurred in the past and will
take place again in the future. Among the population of asteroids, only those
with orbits close to that of the Earth, which are known as Near Earth Aster-
oids, represent a real risk. There are a number of different measures that can
be taken to mitigate this hazard. The most basic measures have a preven-
tive nature and aim at cataloguing the whole NEA population. A complete
catalogue of accurate orbits would allow us to know, well in advance, the
asteroids that are on a collision course. The second type of measures, more
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selective and targeted for a particular threatening asteroid, include different
deflection techniques to avoid its collision with the Earth. Finally, if the pre-
vious actions fail, it is still possible to implement a third kind of measures,
such as population evacuations before the impact or construction of refuges
near the shock area, to mitigate the effects of a certain collision. It is worth
noting that the success of the measures of the second and third kind heavily
relies on the time interval ranging from the publication of a certain impact
to the impact itself. Obviously, those predictions can only be made when
there is enough information available on the asteroids, hence the importance
of the cataloguing.

1.2 Risk scales

The risk scales try to quantify in a simple way the risk associated with the
possible collision of an asteroid with the Earth and their purpose is to serve
as a mean of communication for the astronomers and the general public
when evaluating the seriousness of the potential collisions. In general terms,
we can state that when evaluating the risk of an impact at least three factors
have to be considered.

(1) On one hand it is obvious that the risk has to be an increasing function
of the probability of the impact, in such a way that less probable impacts
lead to low risks and vice versa.

(2) On the other hand, a risk scale must be sensitive to the energy released in
the collision. This quantity is directly related to the size of the asteroid
and its relative velocity with respect to our planet.

(3) Finally, we cannot neglect the time left till the predicted possible impact
since, for instance, a prediction well in advance would allow us to adopt
measures aimed at the mitigation of the possible effects of the threat.

The first risk scale to be introduced was the Torino Scale (TS) (Binzel
2000). It uses numbers from 0 to 10 in combination with colors and words
to classify the impact risks (see Figure 1.1). This scale is discrete and the
fact that it takes into account the third factor only in a binary way makes
it a bit inconvenient, so that a new scale was proposed, the Palermo Scale
(PS) (Chesley et al. 2002). This scale is continuous, includes the three
forementioned factors and is mainly used among professionals. Basically,
the Palermo Scale compares the destructive effect of a certain impact with
that of the whole population of asteroids, both known and unknown. Most
of the asteroids posted in the Risk Page of NEODyS1 and JPL are TS = 0

1It is available at http://newton.dm.unipi.it/neodys/index.php?pc=4.1.

http://newton.dm.unipi.it/neodys/index.php?pc=4.1
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and PS < −2. The first notorious case was 2002 NT7, since although it was
TS = 1 - but very close to the TS = 2 region, on July 23, 2002 - it was the
first asteroid to reach a positive PS value. 2002 NT7 held this PS record
until 2004 MN4 (now named Apophis) came into scene beating any previous
record, both in the Torino and the Palermo scales.

Figure 1.1. Graphical representation to compute the Torino Scale, and hence the
associated color to classify the risk from white (no risk) to red (certain impact) passing
through green, yellow and orange.

1.3 Brief history

One of the first serious analyses of the impact possibility of a real asteroid
occurred in early 1998, for asteroid 1997 XF11 (Marsden 1999). A possible
impact in 2028 was proposed but then determined to never have been possi-
ble. During the subsequent discussions, however, potential impacts beyond
2028 were identified, despite the problems due to the non-linearity intro-
duced from the 2028 close approach. Later, the possibility of those impacts
was eliminated. Nonetheless, the 1997 XF11 scare had the very beneficial ef-
fect of motivating significant research into impact hazard assessment and led
to the identification of the concept of keyholes and the creation of automated
non-linear impact monitoring systems.
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The first verified potential impact of an NEO was reported shortly there-
after for asteroid 1999 AN10 (Milani et al. 1999), although its impact prob-
ability was only of order 10−9. Later the same year, 1998 OX4 was found to
have a small potential for a collision with Earth (Milani et al. 2000). The
1998 OX4 case presented an interesting problem because the asteroid had
become lost due to difficult observing circumstances and it was no longer
possible to predict where to observe it again to solve the threat.
A solution to this problem would be to identify any threatening object
shortly after its discovery, while its position should still be accurately pre-
dicted, thereby allowing appropriate follow-up tracking to be used to refine
the orbit. This required an automated system that could continually moni-
tor the near-Earth asteroids’ catalogue as new discoveries are added and as
new observations of previous discoveries flow in. The first version of such a
system, called clomon, began operation at the University of Pisa by late
1999. clomon-2 (which is an evolution of clomon) was complemented in
2002 by the JPL Sentry system. These two computer-based impact moni-
toring systems were independently developed and continue to operate today,
providing the operational redundancy and cross-verification that is needed
for this problem.

1.4 The case of Apophis

Since the main topic of the thesis is the impact monitoring of NEAs, we
have to mention asteroid (99942) Apophis. The whole story can be found
in Sansaturio et al. (2008).

On December 20, 2004 the Minor Planet Center issued the Minor Planet
Electronic Circular (MPEC) 2004-Y25 announcing the discovery of a new
NEA with designation 2004 MN4. Only two days later it was already ap-
parent that this asteroid, currently known as Apophis, would be notorious:
our close approach monitoring system was showing a virtual impactor in
2029 reaching the level 2 in the Torino Scale, the first such case since our
monitoring system had been operational.
On December 23, Dave Tholen (University of Hawaii) obtained accurate
remeasurements for all the bad June observations from Kitt Peak. The
results of clomon-2 were a little less bad than the previous day, but still
at the TS = 2 and PS > 0 level. The agreement between clomon-2 and
Sentry was good to the point that there was no way to cast into doubt the
existence of the 2029 VI, although the quality and time distribution of the
data was not so good as desired. The results were published in the Risk
Pages simultaneously and including a note stressing that the situation was
bound to change as new data became available.
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On Christmas Eve, the new available observations gave new outputs of
clomon-2 with unprecedented TS = 4 and PS > +1. The NEODyS team
posted the results near 20:00 CET and continued to make a call for obser-
vations. During the following two days (25-26) new observations started to
flow in: the MPC issued four special MPECs (three on the 25th and one
on the 26th) for 2004 MN4. The NEODyS team was furiously changing all
parts of the software which were not performing as expected because of the
new dynamical features of the case. Certainly, 2004 MN4 has proven to
be a challenge for both monitoring systems. On December 27, we got the
maximum IP ever: the infamous 1 in 38 chances of impact.

The MPC issued 4 new special MPECs. In particular, MPEC-Y70 con-
tained pre-discovery observations for 2004 MN4 from observatory code 691
(Spacewatch), which extended the arc back to March 2004. Moreover,
Tholen sent time corrections to the June 19 observations. The NEODyS
team processed this new data: the most outstanding result being that the
2029 VI had been ruled out, which brought an end to the ”Apophis crisis“.
The collaborative work to exclude the possibility of that impact provides
a great example of the practices needed to handle a delicate situation in
which the information that becomes public must be carefully presented and
commented to avoid unnecessary concerns.

1.5 Impact monitoring: mathematical theory

The mathematical methods used in impact monitoring have been developed
over the years, in a sequence of papers to which we refer the reader for a
complete explanation: Milani et al. (1999), Milani et al. (2000), Chesley
et al. (2002), Valsecchi et al. (2003), Milani et al. (2005a) and Milani et al.
(2005b).

The classical impact monitoring procedure uses as initial condition at
t0 the solution x∗ ∈ RN of a non-linear least squares fit, along with its
covariance matrix Γ – Γ(x∗) Milani et al. (2010, Chapter 5). We denote
with N the dimension of the parameter space. This space has dimension
N = 6 when we solve for the six orbital elements, but it could have higher
dimension if some other parameter is determined along with the orbital
elements. A common situation is the determination of the Yarkovsky-related
semimajor axis drift (Farnocchia et al. 2013; Chesley et al. 2016; Del Vigna
et al. 2018). This has consequences also for the impact monitoring. Indeed,
a dynamical model including non-gravitational forces is sometimes needed
to make reliable impact predictions, especially if the hazard analysis time
span is extended to time intervals longer than one century. In Chapter 3,
this aspect is discussed in detail.
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Given m ≥ N scalar observations we call ξ ∈ Rm the vector of the
observed-computed debiased astrometric residuals. The function

Q(x) :=
1

m
ξ(x)>Wξ(x)

is the target function, where x ∈ RN are the fit parameters and W is a
symmetric positive definite weight matrix.

The nominal solution is surrounded by a set of orbits that are still com-
patible with the observational dataset, the so-called confidence region, that
is defined to be

Z(σ) :=

{
x ∈ RN |Q(x) ≤ Q∗ +

σ2

m

}
, (1.1)

where σ > 0 is a confidence level and Q∗ := Q(x∗). The confidence region
is the basic tool for the impact monitoring activity, since impact predic-
tions have to take into account all the possible orbits compatible with the
observational dataset and not the nominal solution only.

If we take the quadratic approximation for the target function around x∗,
the confidence region defined by (1.1) can be approximated by the confidence
ellipsoid

Zlin(σ) :=
{

x ∈ RN | (x− x∗)>C(x− x∗) ≤ σ2
}
,

a region delimited by the (N − 1)-dimensional ellipsoid given by the pos-
itive definite quadratic form associated to the normal matrix C = C(x∗).
As explained in what follows, the confidence ellipsoid is just used for lo-
cal computations, since the assumptions to use this approximation are not
applicable to impact monitoring in general.

1.5.1 Sampling of the confidence region

The main goal of impact monitoring is to establish whether the confidence
region contains virtual impactors. Thus the confidence region is sampled
by a finite set of Virtual Asteroids (VAs). Since the dynamical system
describing the asteroid orbits is not integrable, only a finite number of initial
conditions can be computed and propagated over the selected time interval.
This sampling has to be done in an efficient way, that is with a few but
selected orbits, in such a way that they are as much as possible representative
of the infinite set of possible orbits. The geometric sampling methods are
one possible way to select the ensemble of virtual asteroids: for this class of
methods the sampling takes place on the intersection between the confidence
region and a differentiable manifold. In particular, Milani (1999) and Milani
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et al. (2005a) introduced a 1-dimensional sampling method, in which the
geometric object is a smooth line in the orbital elements space, the Line
Of Variations. The main advantage of this approach is that the set of VAs
has a geometric structure, that is they belong to a differentiable curve along
which interpolation is possible.

Another sampling method, namely Monte Carlo, directly uses the proba-
bilistic interpretation of the least squares principle, sampling the probability
distribution in the orbital elements space to obtain a set of equally prob-
able orbits (Chodas et al. 1996). More complex sampling methods, such
as 2-dimensional ones, have been proposed in Tommei (2005) and recently
have been recently used to deal with the problem of the imminent impactors
(Farnocchia et al. 2015c; Spoto et al. 2018). This problem has been analysed
and some improvements are discussed in Chapter 2.

1.5.2 LOV propagation

The LOV sampling computation provides a set of orbits {x(σi)}i=−M, ...,M ,
corresponding to values {σi}i=−M, ...,M of the LOV parameter. As intro-
duced in Milani et al. (1999), the second step in impact monitoring consists
in the propagation of each VA in the future. Through the LOV propagation,
the Earth encounters of each VA are detected. To this aim, as a first step we
associate to each close approach of a VA the plane passing through the Earth
center and orthogonal to the unperturbed velocity of the VA2, the so-called
Target Plane (TP) (Valsecchi et al. 2003). To avoid geometric complica-
tions, we call “close” only those approaches with a distance from the Earth
center of mass not exceeding some value, commonly fixed to RTP = 0.2 au,
and thus the TP is actually considered as a disk with radius RTP . Lastly,
to keep track of a close approach we define a function g : RN → R2 that
maps an orbit x that experiences a close encounter with the Earth to a
point y = (ξ, ζ) ∈ R2 on the TP3. This function is the composition between
the propagation from the initial epoch to the closest approach date and the
conversion to the TP coordinates. Actually, inside a given close approach
there can be several local minima of the geocentric distance: the definition
of g can be extended to each of these minima, and consequently there are
several TP traces corresponding to a single orbit x.

2That is, orthogonal to the incoming asymptote of the hyperbola defining the two-body
approximation of the trajectory at the time of closest approach.

3The commonly used names for the TP coordinates are ξ and ζ, see Chapter 5. For
a discussion on the choice of the coordinates (ξ, ζ) on the TP, see (Valsecchi et al. 2003;
Milani et al. 2005b) and Appendix A of this thesis.
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1.5.3 Stretching and width

First we introduce a notation that we are going to use here and throughout
the whole thesis. Let f : U → Rm be a function defined on an open set
U ⊆ Rn. We indicate with Dfx∗ the differential of f in x∗. It is the linear
map Dfx∗ : Rm → Rn represented by the Jacobian matrix of f computed in
x∗, that is the m× n matrix defined to be

(Dfx∗)ij –
∂fi
∂xj

(x∗) for all i = 1, . . . , m, j = 1, . . . , n.

Since the differential is a linear map, we shall use the same notation for the
map and for the Jacobian matrix.

Two important quantities involved in impact monitoring are the stretch-
ing and the width at each VA. Since the TP analysis is performed locally,
the linear approximation around each VA is allowed. Let sx be a LOV orbit
and let sy := f(sx) be the corresponding TP trace. The differential Df(sx) of
f in sx maps the confidence ellipsoid ZXlin(σ) around sx onto the confidence
ellipse ZYlin(σ) around sy. By the covariance propagation law, the TP ellipse
ZYlin(σ) is defined through the inequality

(y − sy)>C(sy)(y − sy) ≤ σ2,

where C(sy) = Γ(sy)−1 and

Γ(sy) = Df(sx) Γ(sx)Df(sx)>

is the 2× 2 covariance matrix on the TP. The square root of the eigenvalues
of Γ(sy) are the lengths of the semimajor and semiminor axis of the ellipse
ZYlin(1), that are respectively the stretching S and the width w at the LOV
orbit sx. If we have a LOV sampling, as in the case of impact monitoring, we
have a further map s : R → RN , which is the parameterization of the LOV
as a differentiable curve, that is s(σi) = xi. In this way we can consider the
composite map f = g ◦ s from the sampling space to the target plane, and
thus the value of the stretching along the LOV in σ is

S(σ) –

∣∣∣∣ dfdσ (σ)

∣∣∣∣ =

∣∣∣∣∂g

∂x
(s(σ)) · ds

dσ
(σ)

∣∣∣∣ . (1.2)

That is, the stretching along the LOV measures the displacement of two
points on the target plane as a function of the separation between the cor-
responding points in the sampling space.
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1.5.4 Return analysis

According to Milani et al. (2005b), the list of the close encounters of all the
VAs is decomposed into showers and returns. In particular, first the close
approaches are clustered by date to obtain the showers and then each shower
is further divided in LOV segments with consecutive indices, the returns.
Then each return is carefully analyzed to search for virtual impactors.

When there are many points on the TP in a given return it is easy
to understand the LOV behaviour: the stretching is small and the linear
theory is locally applicable. On the contrary, in strong non-linear cases the
stretching is large and changes rapidly from point to point: in this case
a local analysis is necessary in the neighborhood of each VA. We refer to
Milani et al. (2005b) and Tommei (2006) for a discussion on the possible
geometries of the LOV trace on a target plane and for a proper solution
for each case. Here we only want to outline the basic idea of the return
analysis with a simple example. The key point is that the virtual asteroids
are not just a set of points but they sample a smooth curve, allowing us to
interpolate between consecutive sample points. For instance, let us suppose
two consecutive VAs xi and xi+1 have TP trace points yi and yi+1 straddling
the Earth impact cross section. If the geometry of the TP trace is simple
enough (principle of simplest geometry), an interpolation method provides
a point on the LOV xi+δ with 0 < δ < 1 and such that yi+δ is inside the
Earth impact cross section: then, around xi+δ there is a virtual impactor.
If a virtual impactor has been found, by computing the probability density
function with a suitable Gaussian approximation centred at xi+δ it is possible
to estimate the probability integral on the impact cross section, that is the
impact probability associated with the given VI.

1.5.5 Geometry of the LOV trace on the TP

This section is essentially based on Milani et al. (2005b). Let us denote with
P (σ) the trace on a given TP of the LOV point corresponding to the value
σ of the LOV parameter. Let P1 and P2 be the geocentric position vectors
on the TP of two consecutive VAs, corresponding to the values σ1 and σ2 of
the LOV parameter, respectively. Let S1 – ∂P1/∂σ and S2 – ∂P2/∂σ be
the corresponding derivative vectors. Let α1 and α2 be the angles between
the derivative vectors and the ζ-axis (see Figure 1.2). We also set

∆α– α1 − α2

and
cosβ1 –

(P2 − P1) · S1

|P2 − P1||S1|
and cosβ2 –

(P2 − P1) · S2

|P2 − P1||S2|
.



18 1. An overview of the Impact Monitoring

−0.2 0 0.2

−0.2

0

0.2

Astronomical Units (AU)

A
s
tr

o
n

o
m

ic
a

l 
U

n
it
s
 (

A
U

)

P
1
 

P
2
 

S
2
 

S
1
 

α
2
 

α
1
 

Earth cross section 

Figure 1.2. The quantities used to classify the behaviour of two consecutive TP
points are obtained from the geocentric vectors Pi and their derivatives (with respect
to the LOV parameter) Si.

A key function is the derivative of the square distance from the Earth centre
with respect to σ:

f(σ) –
dr2

dσ
(σ), (1.3)

where r2(σ) – ξ2(σ) + ζ2(σ) is the squared distance of the point P (σ)
from the centre of the Earth. The sign of f(σ) provides critical information
because it indicates the local increase and decrease of the distance. For the
classifications, we take into account the angle ∆α between the two derivative
vectors, the sign of the function f(σ) in P1 and P2, and the alignment of
the two derivative vectors with respect to the vector between the two TP
points, through the angles β1 and β2.

In Milani et al. (2005b) six fundamental classifications of pairs of TP
points are identified by using the first two quantities, plus some special
cases when using also the third one. They are all listed in Table 1.1.
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Table 1.1. Classification of LOV segments on the TP between two consecutive VAs.
The six fundamental types are listed first, followed by special cases that are unique to
either clomon-2 or Sentry. (a) If both | sinβ1| ≥ sinβlim1

and | sinβ2| ≥ sinβlim2
,

clomon-2 only. For a discussion on the choice of the limit values for sinβi refer to
Milani et al. (2005b). (b) If both cosβ1 < 0 and cosβ2 < 0, Sentry only.

cos ∆α f(σ1) · f(σ2) f(σ2)

SIMPLE MIN > 0 < 0 > 0
SIMPLE MAX > 0 < 0 < 0
NO EXTREMA > 0 > 0 –

INT MIN < 0 < 0 > 0
INT MAX < 0 < 0 < 0
INT FAIL < 0 > 0 –

ENTANGLEDa > 0 – –
UNRELATEDb > 0 < 0 –

The first three classifications have the property that the curvature of the
LOV trace on the TP between the two points is moderate, at most 90◦.

• SIMPLE MINimum. In [σ1, σ2] there is at least one point σ = σmin
with f(σmin) = 0 and which is a minimum for the distance from the
Earth.

• SIMPLE MAXimum. In [σ1, σ2] there is at least one maximum in
the distance from Earth. This case is ignored under the hypothesis
that in the interval is present only one maximum.

• NO EXTREMA. Both points are going away or both are approach-
ing to the Earth, but the positions of S1 and S2 do not indicate the
presence of extrema of the function r2(σ) in [σ1, σ2]. Also this case is
ignored.

The next three classifications indicate a substantial curvature, generally a
reversal, of the LOV between the two points P1 and P2.

• INTerrupted MINimum. It is an interrupted return. The LOV
seems to behave as in a SIMPLE MIN, but, for some value σ, it turns
back and it goes away in the opposite direction. The tip of this in-
terrupted can be before the Earth (the function r2(σ) has only one
minimum), beyond the Earth (the function r2(σ) has two points of
minimum and one point of maximum) or even inside the Earth.
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• INTerrupted MAXimum. Opposite to the previous one, and in
[σ1, σ2] there is at least one maximum. Also this case is ignored.

• INTerrupted FAILed. It is a part of interrupted with maximum:
in [σ1, σ2] there at least one maximum and one minimum.

There are two special cases that are only considered by one of the two
monitoring systems. Since they deserve a longer discussion, we refer to Mi-
lani et al. (2005b) for the entire analysis. Finally, there are three additional
cases in which individual VAs, rather than pairs, are considered:

• HEAD. It is the first VA of a return with f(σ) > 0.

• TAIL. It is the last VA of a return with f(σ) < 0.

• SINGLETON. There is only one VA on the TP (in the return).

When the local geometry of the LOV has been studied as shown before
and in case a minimum of f(σ) could exist, the analysis is continued with
iterative schemes to determine the actual minimum distance by interpolating
between the consecutive points. For all the details we refer to Milani et al.
(2005b).



Chapter 2
Imminent impactors

Short-arc orbit determination is a very important step when an asteroid
is first discovered. In these cases the timing is essential, because we are
interested in a rapid follow-up of a possible imminent impactor, which is
an asteroid impacting the Earth shortly after its discovery, within the same
apparition (interval of observability). The observations are so few that the
standard differential correction procedure (Milani et al. 2010) of finding an
orbit by a least-squares minimisation fails, and other methods need to be
used to extract information on the orbit of the object.

Several initial orbit computation methods have been developed in the last
25 years. For instance, Muinonen et al. (1993) defined a Gaussian probability
density on the orbital elements space using the Bayesian inversion theory. In
particular, they determine asteroid orbital elements from optical astrometric
observations using both a priori and a posteriori densities; the latter were
computed with a Monte Carlo method.

The few observations in the short arc constrain the position and velocity
of the object in the plane of sky, but they leave almost unknown the distance
from the observer (topocentric range) and the radial velocity (topocentric
range-rate). Thus, ranging methods have been developed over the years to
replace or refine the Monte Carlo approach in the short arc orbit deter-
mination. There are two alternative approaches to the ranging methods:
statistical and systematic methods.

The original statistical ranging method (Virtanen et al. (2001), Muinonen
et al. (2001)) starts from the selection of a pair of astrometric observations.
Then, the topocentric ranges at the epoch of the observations are randomly
sampled. Candidate orbital elements are included in the sample of accepted
elements if the χ2 value between the observed and computed observations
is within a pre-defined threshold. Oszkiewicz et al. (2009) improved the

21
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statistical ranging using the Markov-Chain Monte Carlo (MCMC) to sam-
ple the phase space. The MCMC orbital ranging method is based on a
bivariate Gaussian proposal probability density function for the topocentric
ranges. Then, Muinonen et al. (2016) have developed a random-walk rang-
ing method in which the orbital-element space is uniformly sampled, up to
a χ2 value, with the use of the MCMC method. The weights of each set
of orbital elements are based on an a posteriori probability density value
and the MCMC rejection rate. These authors have developed this method
for the European Space Agency (ESA) Gaia mission, in the framework of
Gaia alerts on potentially new discovered objects by Gaia (see Tanga et al.
(2016)).

On the other hand, Chesley (2005) and Farnocchia et al. (2015c) in-
troduced the so-called systematic ranging, which systematically explores a
raster in the topocentric range and range-rate space (ρ, 9ρ). This technique
enables the description of asteroid orbital elements as a function of range
and range-rate. Then, the systematic ranging also allows one to determine
the subset of the sampling orbits that lead to an impact with the Earth.

In this chapter we describe a new approach to the systematic ranging,
based on knowledge of the Admissible Region (AR) (Milani et al. 2004), and
a new method to scan the region. The process has some main advantages
to other methods described above as follows:

(1) Our grid is more efficient, for two main reasons:

(a) We discard all the objects that are not in the AR, saving CPU time
and making the systematic ranging more accurate in finding the
region in the (ρ, 9ρ) space of the possible orbital solutions.

(b) We use two different grids depending on the boundary of the AR.
The first grid is larger and less dense, the second is based on a
refinement using the value of the post-fit χ2 of each point in the
first grid (see Section 2.3).

(2) The computation of the probability for the potential impactors (Sec-
tion 2.6) as well as the computation of the scores (Section 2.8.2) are
based on a rigorous probability propagation from the astrometric error
model, without any assumption of a priori probability density functions
on the range and range-rate space (see Section 2.5).

2.1 Very Short Arcs, sometimes too short

The rate of asteroid discoveries is continuously increasing, especially since
automated CCD surveys have become operational. Their modes of oper-



2.1 Very Short Arcs, sometimes too short 23

ations, although they may differ in some details, are essentially the same.
A number N of digital images of the same area on the celestial sphere is
taken within a short time span, typically within a single night1. Then the
images are digitally blinked, that is a computer program is run on this set
of frames to identify all changes among them. If an object is found to move
along a straight line, with uniform velocity, in all N frames, then it should
be the detection of a real moving object, provided the signal to noise ratio
is large enough to make unlikely the presence of exactly aligned spurious
signals. If the image is found in less than N frames it still can be a real
object with marginal signal to noise, it could have been covered by a star
image in some of the frames, but it could also be a spurious detection. Typ-
ically 3 ≤ N ≤ 5, and 1 hour is the time span between the first and the
last observation. Such a detection is reported to the Minor Planet Center
(MPC) as a sequence of N observations. We shall call such a sequence a
Very Short Arc (VSA).

This operation mode is optimal for detecting moving objects of asteroidal
and cometary nature. Unfortunately, it is not at all optimal for determining
the orbit of the detected object: these arcs are, in most cases, too short for a
full orbit determination. When this is the case, we call the set of observations
a Too Short Arc (TSA). As it is well known from the theory of preliminary
orbit determination (Gauss 1809; Danby 1992), when three observations are
used to compute an orbit, the curvature of the arc appears as a divisor in the
orbit solution of Gauss’ method. The smaller is the curvature, the less accu-
rate is the orbit; taking into account the observational errors, in most cases
it turns out to be impossible to apply the usual computational algorithm,
consisting of a preliminary orbit determination by means of Gauss’ method
followed by a least squares fit (differential correction). When starting from
a TSA, either Gauss’ method fails or the differential correction procedure
does not converge.

For this reason the TSAs are not considered discoveries, but just detec-
tions. This does not indicate that the observed object is fictitious, but just
that its nature cannot be determined. Indeed without an orbit it is not pos-
sible to discriminate among different classes of objects, it is not possible to
predict ephemerides allowing for follow-up and it is seldom possible to find
an identification with a known object with a reliable orbit. In Milani et al.
(2004), the authors dealt with the problem created by the existence of large
databases of TSAs, and they proposed a solution. A TSA is recorded as a
set of N observations, which means that a set of points on a straight line is
what is actually detected, with deviations from alignment compatible with
the random observational error. Thus from the TSA we can compute the

1This is why these short sequences of observations are called One Night Stand (ONS).
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straight line, either by linear regression or by other fitting procedure. Then
a TSA is represented by an attributable, consisting of a reference time (just
the mean of the observing times), two average angular coordinates and two
corresponding angular rates at the reference time. An attributable provides
no information on the range (the radial distance) and range-rate. Milani et
al. (2004) proved that an attributable and therefore a TSA contains useful
information.

2.2 The Admissible Region

We denote with r and q the heliocentric position vectors of the body and
the observer on the Earth at time t. Let r = ‖r‖, q = ‖q‖ be the Euclidean
norms of these vectors. We also write

(ρ, α, δ) ∈ R+ × S1 × (−π/2, π/2)

for the spherical coordinates of the topocentric position ρ = r − q of the
body, with ρ = ‖ρ‖.

Even though the observations are too scarce, we are able to compute
the right ascension α, the declination δ, and their time derivatives 9α and
9δ, by fitting both angular coordinates as a function of time with a polyno-
mial model. These four quantities could be assembled together to form the
attributable (Milani et al. 2005):

A– (α, δ, 9α, 9δ) ∈ S1 ×
(
−π

2 ,
π
2

)
× R2

at a chosen time t, which could be the time of the first observation or
the mean of the observation times. The information contained in the at-
tributable leaves the topocentric distance ρ and radial velocity 9ρ completely
unknown. We would have a full description of the topocentric position and
velocity of the asteroid in the attributable elements (α, δ, 9α, 9δ, ρ, 9ρ), if ρ and
9ρ were known. The Admissible Region has been introduced to constrain the
possible values of ρ and 9ρ with the hypothesis that the observed object is a
Solar System body.

2.2.1 Excluding interstellar orbits

We introduce the following notation: let

E@(ρ, 9ρ) –
1

2
‖ 9r(ρ, 9ρ)‖2 − k2 1

r(ρ)
(2.1)
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with k = 0.01720209895 the Gauss’ constant, be the two-body energy of the
heliocentric orbit of B, in the approximation neglecting the mass of B. The
region D1 excluding interstellar orbits is the one that satisfies

E@(ρ, 9ρ) ≤ 0. (2.2)

In particular, it can be proved that this region can have either one or two
connected components. The heliocentric position of B is given by

r = q + ρρ̂

where ρ̂ is the unit vector in the observation direction. Using the spherical
coordinates (ρ, α, δ), the heliocentric velocity 9r of B is

9r = 9q + 9ρρ̂ + ρ 9αρ̂α + ρ 9δρ̂δ,

where ρ̂α = ∂ρ̂/∂α, ρ̂δ = ∂ρ̂/∂δ and 9q is the heliocentric velocity of the
observer. In coordinates

ρ̂ = (cosα cos δ, sinα cos δ, sin δ)

ρ̂α = (− sinα cos δ, cosα cos δ, 0)

ρ̂δ = (− cosα sin δ,− sinα sin δ, cos δ)

ρ̂ · ρ̂α = ρ̂ · ρ̂δ = ρ̂α · ρ̂δ = 0, ‖ρ̂‖ = ‖ρ̂δ‖ = 1, ‖ρ̂α‖ = cos δ.

Thus the squared norms of the heliocentric position and velocity are

r2(ρ) = ρ2 + 2ρq · ρ̂ + ‖q‖2

and

‖ 9r(ρ, 9ρ)‖2 = 9ρ2 + 2 9ρ 9q · ρ̂ + ρ2
(
9α2 cos2 δ + 9δ2

)
+

+ 2ρ
(
9α 9q · ρ̂α + 9δ 9q · ρ̂δ

)
+ ‖ 9q‖2.

We use the coefficients

c0 = ‖q‖2
c1 = 2 9q · ρ̂
c2 = 9α2 cos2 δ + 9δ2 = η2

c3 = 2 9α 9q · ρ̂α + 2 9δ 9q · ρ̂δ
c4 = ‖ 9q‖2
c5 = 2q · ρ̂

and the polynomial expressions

‖ 9r(ρ, 9ρ)‖2 = 2T@(ρ, 9ρ) = 9ρ2 + c1 9ρ+ c2ρ
2 + c3ρ+ c4

r2 = S(ρ) = ρ2 + c5ρ+ c0, W (ρ) = c2ρ
2 + c3ρ+ c4.
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By substituting the last expressions in (2.1), condition (2.2) reads

2E@(ρ, 9ρ) = 9ρ2 + c1 9ρ+W (ρ)− 2k2√
S(ρ)

≤ 0.

To have real solutions for 9ρ, the discriminant of E@, as a polynomial of degree
2 in 9ρ, must be non-negative, i.e.,

c2
1

4
−W (ρ) +

2k2√
S(ρ)

≥ 0 .

Let us set γ = c4 − c2
1/4 (note that γ ≥ 0) and define

P (ρ) = c2ρ
2 + c3ρ+ γ.

Then condition (2.2) implies

2k2√
S(ρ)

≥ P (ρ) . (2.3)

The polynomial P (ρ) is non-negative for each ρ. In fact, it is the opposite
of the discriminant of T@(ρ, 9ρ), regarded as a polynomial in the variable
9ρ, and T@, being a kinetic energy, is non-negative, thus its discriminant is
non-positive. Also S(ρ) is non-negative, thus we can square both sides of
(2.3) and obtain an inequality involving a polynomial of degree 6. It can be
written as

4k4 ≥ V (ρ) = P 2(ρ)S(ρ) =

6∑
i=0

Aiρ
i,

with coefficients

A0 = c0γ
2, A1 = c5γ

2 + 2c0c3γ,

A2 = γ2 + 2c3c5γ + c0(c2
3 + 2c2γ),

A3 = 2c3γ + c5(c2
3 + 2c2γ) + 2c0c2c3,

A4 = c2
3 + 2c2γ + 2c2c3c5 + c0c

2
2,

A5 = c2(2c3 + c2c5), A6 = c2
2 .

The most important property of the region defined by (2.2) is the fol-
lowing. For a proof, refer to Milani et al. (2004).

Theorem 2.1. The region D1 defined by condition (2.2) has at most two
connected components.
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To know the number of components of the region defined by (2.2) we have
to compute the roots2 of the degree six polynomial V (ρ) − 4k4. In par-
ticular: if there is one positive root (with odd multiplicity) the region D1

has a single connected component with non-empty interior; if there are two
positive roots (one simple and one with odd multiplicity) then there are two
connected components, one with non-empty interior and one that is reduced
to a point; if there are three positive simple roots then D1 has two connected
components with non-empty interior.

2.2.2 The inner boundary

A difficulty in the practical usage of the region defined by condition (2.2) as a
tool for the identification problem is that it is not a compact set, that is, the
observed object could be at an arbitrarily small distance from the observer.
This makes impossible to sample it with a finite number of points in such a
way that the corresponding orbits are representative of all the possibilities.
There are several ways to assign an inner boundary to the region where B
could be, based on different practical considerations:

(1) an inner boundary can be assigned requiring that B is not a satellite
of the Earth, i.e., by imposing a condition on the geocentric two-body
energy EC(ρ, 9ρ);

(2) a minimal distance can be dictated by physical limitations, such as the
Earth atmosphere or the Earth radius RC in the geocentric approxima-
tion;

(3) a minimal distance can be assigned by requiring that B is not too small,
if photometric measurements are supplied together with the astrometry
used to compute the attributable.

Excluding satellites of the Earth

We look for a simple description of the region D2 satisfying the condition

EC(ρ, 9ρ) ≥ 0.

A simplifying approximation is obtained by assuming that the observations
are geocentric: with qC the heliocentric position of the Earth centre, assum-

2There are fast and reliable algorithms in the Numerical Analysis literature providing
the roots of a polynomial (as a complex vector), with rigorous upper bounds for the errors
including rounding off. We use the algorithm by Bini (1996) and the corresponding public
domain software.
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ing r = ρ + qC, the geocentric energy is

EC(ρ, 9ρ) –
1

2
‖ 9ρ‖2 − k2µC

1

ρ
, (2.4)

where µC is the ratio between the mass of the Earth and the mass of the
Sun. By using ‖ 9ρ(ρ, 9ρ)‖2 = 9ρ2 + ρ2η2, where η =

√
9α2 cos2 δ + 9δ2 is the

proper motion, (2.4) becomes

9ρ2 + ρ2η2 − 2k2µC

1

ρ
≥ 0,

that is

9ρ2 ≥ G(ρ), with G(ρ) =
2k2µC

ρ
− η2ρ2, (2.5)

where G(ρ) > 0 for 0 < ρ < ρ0 – 3
√

(2k2µC)/η2. However, condition (2.4)
is meaningful only inside the sphere of influence of the Earth, otherwise the
dynamics of B is dominated by the Sun, not by the Earth. Thus we need to
introduce condition

ρ ≥ RSI – aC
3

√
µC

3
' 0.010044 au, (2.6)

where RSI is the radius of the sphere of influence, aC is the semimajor axis
of the Earth. We call D3 the region defined by condition (2.6). To exclude
the satellites of the Earth we have to assume that either (2.4) or (2.6) apply.
If ρ0 ≤ RSI the region of the satellites to be excluded is defined simply by
equation (2.5), and this occurs for

ρ3
0 =

2k2µC

η2
≤ R3

SI = a3
C

µC

3
.

Thus, taking into account Kepler third law a3
Cn

2
C ' k2 with nC the mean

motion of the Earth, we have ρ0 ≤ RSI if and only if η ≥
√

6nC. Otherwise,
if ρ0 > RSI , the boundary of the region containing satellites of the Earth is
formed by a segment of the straight line ρ = RSI and the two arcs of the
9ρ2 = G(ρ) curve with 0 < ρ < RSI .

The shape of the inner boundary

To understand the shape of the boundary of the Earth satellites region we
need to find possible intersections between the curves EC = 0 and E@ = 0.
However, if EC is computed in a geocentric approximation, these intersec-
tions are physically meaningful only if they occur for RC < ρ < RSI , that
is, during a close approach to the Earth, but above its physical surface. In
Milani et al. (2004) the following result is proved.
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Theorem 2.2. For RC ≤ ρ ≤ RSI the condition EC(ρ, 9ρ) ≤ 0 implies
E@(ρ, 9ρ) ≤ 0.

This result shows that the intersections of the two zero-energy curves occur
only where they do not matter. It also implies that the region of Solar System
orbits excluding the satellites of the Earth does not have more connected
components than the region satisfying condition (2.2) only. This applies only
for particular values of the mass, radius and orbital elements of the planet
on which the observer is located. It is a physical property of the Earth, not
a general property of whatever planet.

The tiny object boundary

An alternative method to assign a lower limit to the distance is to impose
that the object is not a “shooting star” (very small and very close to the
Earth). We assume that the size is controlled by setting a maximum for the
absolute magnitude H

H(ρ) ≤ Hmax. (2.7)

If some value of the apparent magnitude is available, then the absolute
magnitudeH can be computed from h, the average of the measured apparent
magnitudes, using the relation

H = h− 5 log10 ρ− x(ρ),

where the correction x(ρ) accounts for the distance from the Sun and the
phase effect. For small ρ (e.g., ρ < 0.01 au) the correction x(ρ) has a negligi-
ble dependence upon ρ because the distance from the Sun is ' 1 au and the
phase is close to the angle between ρ̂ and the opposition direction. Thus we
can approximate x(ρ) with a quantity x0 independent of ρ. Also for larger
values of ρ this is an acceptable approximation. Moreover, we are using ρ,
the distance at the reference time t, for all the epochs of the observations
including photometry: this is a fair approximation unless the relative change
of distance during the time span of the observed arc is relevant, which can
happen only for very small distances. In this approximation, condition (2.7)
becomes

Hmax ≥ H = h− 5 log10 ρ− x0

⇒ log10 ρ ≥
h−Hmax − x0

5
= log10 ρH ,

that is, given the apparent magnitude h, we have a minimum distance ρH =
ρ(Hmax) for the object to be of significant size. Thus the region satisfying
condition (2.7) is just a half plane ρ ≥ ρH . We call shooting star limit the
straight line ρ = ρH .
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Provided ρH ≥ RC it is possible to use the same arguments of the
theorem on the intersection between the energy curves to show that condition
(2.7) does not increase the number of connected components with respect to
the region defined by excluding the satellites of the Earth. On the contrary,
it is quite possible that the geometry of the region becomes simpler. If
Hmax = 30 and h > 20 the entire sphere of influence of the Earth is excluded
by condition (2.7), thus conditions (2.6) is implied by (2.7), and condition
(2.4) becomes irrelevant.

2.2.3 Formal definition of the Admissible Region

Let R – R+×R be the range/range-rate space. We recall the three regions
we introduced so far.

• D1 := {(ρ, 9ρ) ∈ R : E@(ρ, 9ρ) ≤ 0}, such that the body belongs to the
Solar System;

• D2 := {(ρ, 9ρ) ∈ R : EC(ρ, 9ρ) ≥ 0}, such that the body is not a satellite
of the Earth;

• D3 := {(ρ, 9ρ) ∈ R : ρ ≥ RSI}, such that the orbit of the object is not
controlled by the Earth.

We also add the region D4 := {(ρ, 9ρ) : ρ ≥ RC}, the one such that the body
B is outside the Earth.

Definition 2.3. Given an attributable A at a time t, the Admissible Region
is the set

AR(A) := D1 ∩ (D2 ∪ D3) ∩ D4 ⊆ R.

In this way the AR turn out to be a compact subset of R. Moreover, we
are now able to give a complete description of its boundary, that consists of
the following portions of curves.

(1) Part of the algebraic curve E@(ρ, 9ρ) = 0 for ρ > 0. If the polynomial
equation V (ρ)− 4k4 = 0 has three positive roots there is another com-
ponent, consisting of a simple closed curve, at larger values of ρ: this
includes the case when this curve reduces to a single point, and it hap-
pens when the equation has a double positive root.

(2) Two segments of the straight line ρ = RC.

(3) Two portions of the curve 9ρ2 = G(ρ) (corresponding to EC(ρ, 9ρ) = 0)
and one segment of the straight line ρ = RSI in case RSI < ρ0. If
RSI ≥ ρ0 the two portions of the 9ρ2 = G(ρ) are joined at ρ = ρ0.
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2.3 Sampling of the Admissible Region

Despite the formal definition given in the previous section (see Definition 2.3),
for practical purposes, such as systematic ranging, it is better to define the
AR as the set of all the couples (ρ, 9ρ) satisfying the following conditions:

(1) the object belongs to the Solar System, and it is not a too long pe-
riod comet. We consider only the objects for which the value of the
heliocentric energy is less than −k2/(2amax), where amax = 100 au and
k = 0.01720209895 is the Gauss’ constant;

(2) the corresponding object is not a satellite of the Earth, i.e., the orbit of
the object has a non-negative geocentric energy.

(3) we discard the orbits corresponding to meteors too small to be source
of meteorites, using the condition H ≤ Hmax, where Hmax = 34.5 is the
shooting star limit (see Section 2.2.2), and H is the absolute magnitude.

Even with this definition the AR turns out to be a compact subset of R =
R+ × R and to have at most two connected components, that means that
it could be represented as the union of no more than two disjoint regions in
the (ρ, 9ρ) space. The AR has usually one component and the case with two
components indicates the possibility for the object to be distant (perihelion
q > 28 au).

Since the AR is compact, we can sample it with a finite number of points.
We basically use two different sampling techniques, depending on the exis-
tence of a reliable nominal solution. A nominal solution is an orbit obtained
by unconstrained differential corrections, starting from a preliminary orbit
as first guess3. If the value of the geodesic curvature signal-to-noise ratio
(SNR) (Milani et al. 2008) is greater than 3, we say that the nominal orbit
is reliable. In case a reliable nominal solution does not exists we we make
use of a rectangular grid on (ρ, 9ρ) to scan the Admissible Region; otherwise,
if a reliable nominal solution exists we compute a spider web sampling in
a neighbourhood of the nominal solution (Tommei 2006). Both techniques
are described in more detail in Section 2.3.1 and 2.3.2, respectively.

2.3.1 Case I: the rectangular grids

When a reliable nominal solution does not exist, the systematic ranging is
performed by a two-step procedure and in both steps it uses rectangular
grids on R.

3For instance, the preliminary orbit can be obtained from the Gauss’ method, (Milani
et al. 2010).
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First step. The selection of the grid depends on the number of connected
components of the AR and on the values of the roots of V (ρ)− 4k4. We call
r1, r2 and r3 the positive roots of the polynomial, if they exist, The grid for
the first step is selected according to this rules:

(1) if the Admissible Region has one connected component and r1 <
√

10 au
we perform a uniform sampling in log10 ρ with a 50×50 grid over (0, r1]×
[ 9ρmin, 9ρmax];

(2) if the Admissible Region has one connected component and r1 ≥
√

10 au
we perform a uniform sampling in ρ with a 50 × 50 grid over (0, r1] ×
[ 9ρmin, 9ρmax];

(3) if the Admissible Region has two connected components we perform a
uniform sampling in ρ with a 100× 100 grid over (0, r3]× [ 9ρmin, 9ρmax].

Nevertheless, since the AR has a shape dictated by a polynomial equation
and it is not a rectangle, we check the value of the heliocentric energy for
each grid point, and we discard those not satisfying condition 1. Orbits not
satisfying condition 2 are discarded as well, except when we compute the
probability for the asteroid to be a satellite of the Earth4.

Second step. Once we have a grid from the first step, we apply the dou-
bly constrained differential corrections (see Section 2.4) to obtain a sample
of full orbits based on the AR sampling. We also compute a χ value for
each orbit obtained in this way, as in equation (2.10). The purpose of this
preliminary step is to have a way to select the best orbits (in the sense of
their χ value) among the ones obtained in the previous step. We select
the minimum and the maximum value of ρ and 9ρ among all the points for
which the doubly constrained differential corrections reached convergence
and for which χ < 5 (see Section 2.5). In this way we select a rectangle
[ρmin, ρmax]× [ 9ρmin, 9ρmax], smaller than the one employed in the first step.
Moreover, using the first grid we also compute the probability for the object
to be a NEO (see Section 2.8.2) and we use this value to select the grid for
the second step. If the probability of being a NEO is > 50%) the sampling
is uniform grid in log10 ρ, otherwise it is uniform in ρ. In both cases we use
a 100× 100 grid over [ρmin, ρmax]× [ 9ρmin, 9ρmax].

4The object could be either an artificial satellite or an interplanetary orbit in a tem-
porary Earth satellite capture (Granvik et al. 2012).
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2.3.2 Case II: spider web

If a reliable nominal orbit exists, instead of using a grid (as in Section 2.3.1),
we compute a spider web sampling in a suitable neighbourhood of the nom-
inal solution. This is obtained by following the level curves of the quadratic
approximation of the target function used to minimise the RMS of the ob-
servational residuals. The advantage of the use of the cobweb is that first it
is faster than the systematic ranging, and second it is more accurate in the
cases for which we have already a reliable nominal solution.

Let x∗ be the nominal solution with its uncertainty, represented by the
6×6 covariance matrix Γ(x∗). In a neighbourhood of x∗, the target function
can be well approximated by means of the quadratic form defined by the
normal matrix C(x∗) = Γ−1(x∗). The matrix C(x∗) is positive definite,
hence the level curves of the target function are concentric 5-dimensional
ellipsoids in the 6-dimensional orbital elements space. The level curves on
the (ρ, 9ρ) space are represented by the marginal ellipsoids, defined by the
normal matrix

Cρρ(x∗) = Γ−1
ρρ(x∗),

where Γρρ(x∗) is the restriction of Γ(x∗) to the (ρ, 9ρ) space (Milani et al.
2010, Section 5.4). To sample these curves we choose the maximum value
σmax = 5 for the confidence parameter. Then, for each level curve within
the confidence level σmax, we select the points corresponding to some fixed
directions. We initially create a regular rectangular grid in the space of polar
elliptic coordinates (r, ϑ), that is we sample the rectangle [0, σmax]× [0, 2π).
Then we apply to the rectangle the following transformation, depending on
the covariance matrix of the nominal orbit and on the orbit itself:(

ρ
9ρ

)
= r

(√
λ1 cosϑ −

√
λ2 sinϑ√

λ2 sinϑ
√
λ1 cosϑ

)
v1 +

(
ρ∗

9ρ∗

)
, (2.8)

where λ1 > λ2 are the eigenvalues of the 2 × 2 matrix Γρρ(x∗), v1 is the
unit eigenvector corresponding to the greatest eigenvalue λ1, and ρ∗ and 9ρ∗

are the range and range-rate values of the nominal solution.

2.4 The Manifold Of Variations

We describe how to obtain a sample of orbits compatible with the obser-
vational dataset starting from a sampling of the Admissible Region. This
method is used twice in the rectangular sampling case, after the first step
(as anticipated in Section 2.3.1) and after the second step, and it is used
once in the spider web sampling case.
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To obtain orbits from observations we use the least squares method (Mi-
lani et al. 2010, Chapter 5). Thus we recall that the target function is

Q(x) =
1

m
ξ(x)>Wξ(x),

where x are the orbital elements, m is the number of observations used in
the fit, and ξ is the vector of the observed-computed debiased astrometric
residuals5, and W is the weight matrix (see Section 1.5). The choice of
the weights for each observatory is fundamental, and it has to take into
account the debiasing of the star catalogue systematic errors, unless the
astrometric reduction has already been performed with an essentially bias-
free star catalogue, for example the Gaia DR1 (Lindegren et al. 2016).

In general, as explained in Section 2.1, a full orbit determination is not
possible for such short arcs. Anyway, just using the observational dataset it
is possible to compute an attributable A0 at the mean epoch of the observa-
tions. The AR theory has been developed to obtain constraints on the values
of (ρ, 9ρ), so that we can merge the information contained in the attributable
with the knowledge of an AR sampling. The basic idea of this method is
to fix ρ and 9ρ at some specific values ρ0 = (ρ0, 9ρ0) obtained from the AR
sampling, compose the full orbit (A0, ρ0, 9ρ0) and fit only the attributable
part to the observations with a suitable differential corrections procedure.

Definition 2.4. Given a subset K of the AR, we define the Manifold Of
Variations (MOV) as the set of points (A∗(ρ0),ρ0) such that ρ0 ∈ K and
A∗(ρ0) is the local minimum of the function

Q(A,ρ)|ρ=ρ0
,

when it exists. We denote the Manifold Of Variations withM.

Remark 2.5. In general M is a two-dimensional manifold, since the differ-
ential of the map from the (ρ, 9ρ) space to M has rank 2 (see Section 2.6.4
for further details).

In the case of the systematic ranging, the set K coincide with the whole
AR, sampled with a semi-logarithmic or uniform grid (see Section 2.3.1),
whereas in the spider web caseK coincide with an ellipse around (ρ∗, 9ρ∗) (see
Section 2.3.2). For each sample point ρ0 = (ρ0, 9ρ0) ∈ K we fix ρ = ρ0 and
9ρ = 9ρ0 in the target function Q and then we look for A∗(ρ0) by means of an
iterative procedure, the doubly constrained differential corrections, that are

5In case there is a bias in the observations (Farnocchia et al. 2015b), the residuals are
computed following the classical definition of the residuals as observed-computed and also
by subtracting the biases vector.
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classical differential corrections performed on a 4-dimensional space rather
than on a 6-dimensional one. The normal equation is CA∆A = DA, where

CA := B>AWBA , DA := −B>AWξ , BA :=
∂ξ

∂A . (2.9)

We indicate as K ′ the subset of K on which the doubly constrained differ-
ential corrections converge, giving a point onM. In this way the sampling
ofM is performed over K ′ ⊆ K.

Definition 2.6. For each orbit x ∈M we define the χ-value to be

χ(x) –
√
m(Q(x)−Q∗), (2.10)

where Q∗ is the minimum value of the target function defined as follows: it
is Q(x∗) if a reliable nominal solution x∗ exists; it is the minimum value of
Q(x) onM otherwise.

Remark 2.7. In other words Q∗ := minρ∈K′ Q(A∗(ρ),ρ), and note that Q∗

exists since Q is continuous and K ′ is compact.

By using this information, we can assign a probability to each subset
of K ′, because we are able to determine a probability density function on
the sampling space (see Section 2.5). The first and most urgent application
is the impact probability computation for a possible impactor. Moreover
the probability density function is also necessary to compute the probabil-
ity, hereinafter the score, of each object to belong to one of the following
classes: Near-Earth Object (NEO), Main Belt Object (MBO), Distant Ob-
ject (DO), likely a Kuiper Belt Object (KBO), or Scattered Object (SO)
(see Section 2.8.2 for the conditions defining each class). The latter (SO)
includes all the objects that do not belong to any other category.

2.5 Approach for probability computations

We obtain a probability distribution on the sampling space to be used for
several applications, such as the computation of the impact probability and
the score. We begin assuming that the residuals are a Gaussian random
variable Ξ, with zero mean and covariance Γξ = W−1. Hence the probability
density function on the residuals space is

pΞ(ξ) = N(0,Γξ)(ξ) =

√
detW

(2π)m/2
exp

(
−mQ(ξ)

2

)
=

=

√
detW

(2π)m/2
exp

(
−1

2
ξ>Wξ

)
. (2.11)
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Without loss of generality, we can assume that

pΞ(ξ) = N(0, Im)(ξ) =
1

(2π)m/2
exp

(
−1

2
ξ>ξ

)
, (2.12)

where Im is the m×m identity matrix. As explained in Milani et al. (2010,
Section 5.7), this is obtained by using the normalised residuals in place of the
true residuals; biases due to star catalogue can also be removed while form-
ing the normalised residuals. With this technique, the probability density
function becomes normalised to a standard normal distribution. Thus from
now on, we will use ξ to indicate the normalised residuals, and the function
F maps the orbital elements space to the normalised residuals space. With
the use of normalised residuals, also the expression for the target function
changes and becomes simpler:

Q(x) =
1

m
ξ(x)>ξ(x).

A possible approach to propagate the density (2.12) to the sampling
space uses the Bayesian theory to combine the density coming from the
residuals with a prior distribution. The a posteriori probability density
function for (ρ, 9ρ) is given in Muinonen et al. (1993) as

ppost(ρ, 9ρ) ∝ p(ξ(ρ, 9ρ)) · pprior(ρ, 9ρ)

where pprior is a prior distribution on the sampled space. We report some
possible choices for the prior probability.

• Jeffreys’ prior. It has been used for the first time in Granvik et al.
(2009). It takes into account the partial derivatives of the vector of the
residuals with respect to the coordinates (ρ, 9ρ). Jeffreys’ prior tends to
favour orbits where the object is close to the observer, because of the
sensitivity of the residuals for small topocentric distances. This ap-
proach coincides with a full non-linear propagation of the probability
density function pΞ(ξ) to the AR space. In Section 2.7.2 we investi-
gate this approach, even if we decide to discard it since it results in
spurious probabilities due to the over-weighting of close orbits as well
as Jeffreys’ prior.

• Prior based on a population model. This approach requires the choice
of a metric on the absolute magnitude space, which is far from trivial.

• Uniform distribution. Uniform distribution in the (ρ, 9ρ) space.
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Farnocchia et al. (2015c) give a detailed description of all these possible
choices, and they also analyse how the impact probability change according
to different prior distributions. They conclude that the uniform distribution
is a good choice for an a priori probability density function, because it rep-
resents a good compromise between a simple approach and the identification
of potential impactors.

We propose a new method to propagate the probability density function
pΞ(ξ) back to the sampling space. This method is a rigorous propagation of
the density function according to the probability theory, and it does not use
any a priori assumption. Our approach is described in detail in Section 2.6
and it is based on the Admissible Region theory. Thus it is worth noticing
that we limit our analysis to Solar System orbits (condition number 1 of
Section 2.3), because interstellar objects are very rare. As a consequence,
we use a Bayesian theory with a population limited to the Solar System,
and all the probability computations we describe are actually conditional
probabilities to the AR.

2.6 Probability density function computation

In this section we give the mathematical details to obtain a probability
density function on the sampling space by starting just from the density
pΞ(ξ) on the residuals space and by propagating it back by some maps.

2.6.1 Spaces and maps

Let us introduce the following spaces:

(1) S is the space of the sampling variables. We have that S = R+ × R
if the sampling is uniform in ρ, S = R2 if the sampling is uniform in
log10 ρ, and S = R+ × S1 in the spider web case.

(2) K ′ ⊆ R× R+ is the subset of the points of the Admissible Region such
that the doubly constrained differential corrections give a point on the
MOV;

(3) X = A×R is the 6-dimensional orbital elements space (in attributable
coordinates), where A := S1×(−π/2, π/2)×R2 is the attributable space
and R := R+ × R;

(4) M is the Manifold Of Variations, a 2-dimensional submanifold of X ;

(5) Rm is the residuals space, whose dimension is m ≥ 6 since the least
possible number of observations is 3.
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Now we introduce the maps between these spaces. First, the residuals are
a function of the fit parameters, that is ξ = F (x), with F : X → Rm a
differentiable map. The second map that we define is between the AR space
and the MOV.

Definition 2.8. The map fµ : K ′ →M is defined to be

fµ(ρ) := (A∗(ρ),ρ),

where A∗(ρ) ∈ A is the best-fit attributable obtained at convergence of the
doubly constrained differential corrections.

Remark 2.9. For each ρ ∈ K ′ the vector A∗(ρ) minimises the restriction
Q(A;ρ), that is a function of A only. Note that this minimum exists since
ρ ∈ K ′ and K ′ is by definition the subset of the Admissible Region on which
convergence has been achieved.

Proposition 2.10. The map fµ is a global parameterization of M as a
2-dimensional manifold.

Proof. Here we refer to Appendix C, Theorem C.3. The set K ′ is a subset
of R2 comprised between an open set and its closure, the map fµ is of class
at least C1 and its Jacobian matrix is

(Dfµ)ρ =
∂fµ
∂ρ

(ρ) =


∂A∗
∂ρ

(ρ)
∂A∗
∂ 9ρ

(ρ)

1 0
0 1

 =

∂A∗∂ρ
(ρ)

I2

 , (2.13)

from which is clear that it is full rank on K ′. This concludes the proof,
provingM to be a 2-dimensional manifold according to Theorem C.3.

The last map that we define goes from the sampling space to the AR
space R.

Definition 2.11. The map fσ : S → R+ × R is defined according to the
following cases, depending on the sampling technique:

(i) if the sampling is uniform in ρ, fσ is the identity map;

(ii) if the sampling is uniform in log10 ρ, we have S = R2 and fσ(x, y) :=
(10x, y) 6;

(iii) if we are in the spider web case S = R+ × S1 and the map fσ is given
by (2.8).

6This is equivalent to fσ(log10 ρ, 9ρ) := (ρ, 9ρ), for all ρ ∈ R+ and 9ρ ∈ R.
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We then consider the following chain of maps

S
fσ−→ R+ × R ⊇ K ′ fµ−→M ⊆ X F−→ Rm

and we use it to compute the probability density function on S. We denote
with a bold small letter the variables and with a bold capital letter the ran-
dom variable, on each space. In this way we denote with s the variables of the
sampling space S and with S be the corresponding random variable, as well
as A and R for the random variables on the spaces A and R, respectively.

2.6.2 Conditional density on an affine subspace

Let m and N be two positive integers, with m > N . Let B ∈ M(m,N ;R)
a m × N matrix with full rank, that is rk(B) = N . Consider the affine
N -dimensional subspace of Rm given by

W :=
{
ξ ∈ Rm : ξ = Bx + ξ∗, x ∈ RN

}
= Im(B) + ξ∗.

We can also assume that ξ∗ is orthogonal to W , that is ξ∗ ∈ Im(B)⊥:
indeed, otherwise it is possible to subtract the component parallel to W .
Given the random variable Ξ with the Gaussian distribution on Rm as in
(2.12), we want to find the conditional probability density pΞ|W of Ξ on W .
Let R ∈ M(m;R) be an m ×m rotation matrix and let fR : Rm → Rm be
the affine map

fR(ξ) := R(ξ − ξ∗).

Throughout this section, we use the notation fR(ξ) — ξR =
(

ξ′

ξ′′

)
, with

ξ′ ∈ Rm−N and ξ′′ ∈ RN . We choose R in such a way that for all ξ′′ ∈ RN

f−1
R

(
0
ξ′′

)
= R>

(
0
ξ′′

)
+ ξ∗ ∈W. (2.14)

Proposition 2.12. Condition (2.14) holds for all ξ′′ ∈ RN if and only if
there exists an invertible matrix A ∈M(N ;R) such that RB =

(
0
A

)
.

Proof. (⇐) Let
(

0
ξ′′
)
∈ Rm. Since A is invertible there exists x̃ ∈ RN such

that Ax̃ = ξ′′. Then

R>
(

0
ξ′′

)
= R>

(
0
A

)
x̃ = R>RBx̃ = Bx̃,

and hence R>
(

0
ξ′′
)

+ ξ∗ = Bx̃ + ξ∗ ∈W .
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(⇒) Condition (2.14) implies that for all ξ′′ ∈ RN there exists x̃ ∈ RN such
that (

0
ξ′′

)
= RBx̃.

Since the multiplication by RB is injective, such x̃ is unique. Therefore
there exists a well-defined map P : RN → RN such that P (ξ′′) = x̃. The
map P is linear and injective since KerP = {0}, thus is a bijection. Let
A be the N × N matrix associated to P−1: it is now easy to prove that
RB =

(
0
A

)
.

Proposition 2.13. Let U := {ξR ∈ Rm : ξ′ = 0}. Then the following
holds:

(i) U = fR(W ) = R ImB and the map fR|W : W → U is a bijection;

(ii) Rξ∗ =
(
ξ′∗

0

)
for some ξ′∗ ∈ Rm−N .

Proof. (i) (⊇) If ξ ∈ W there exists x̃ ∈ RN such that ξ = Bx̃ + ξ∗. Then
from Proposition 2.12 we have fR(ξ) = RBx̃ =

(
0
A

)
x̃ ∈ U .

(⊆) Let u ∈ U , so that u =
(

0
ξ′′
)
for some ξ′′ ∈ RN . Define x̃ = A−1ξ′′.

Thus a straightforward calculation shows that fR(Bx̃ + ξ∗) = u, proving
that u ∈ fR(W ).
(ii) Since ξ∗ ∈ (ImB)⊥ andR is an isometry, we have thatRξ∗ ∈ R(ImB)⊥ =
(R ImB)⊥ = U⊥, by using (i).

Theorem 2.14. The conditional probability density of Ξ′′ is N(0, IN ), that
is

pΞ′′(ξ
′′) =

1

(2π)N/2
exp

(
−1

2
ξ′′>ξ′′

)
Proof. By the standard propagation formula for probability density func-
tions under the action of a continuous function, we have that

pfR(Ξ)(ξR) = | detR|pΞ(f−1
R (ξR)) =

=
1

(2π)m/2
exp

(
−1

2
(R>ξR + ξ∗)>(R>ξR + ξ∗)

)
=

=
1

(2π)m/2
exp

(
−1

2

(
ξ>RξR + 2ξ>RRξ

∗ + ξ∗>ξ∗
))

.

The conditional probability density of the variable fR(Ξ) on fR(W ) = U
(equality from Proposition 2.13 (i)) is obtained by using that ξ′ = 0 on U
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and the Proposition 2.13 (ii). We have

pfR(Ξ)|fR(W )(ξ
′′) =

1
(2π)m/2

exp
(
−1

2

(
ξ′′>ξ′′ + ξ∗>ξ∗

))
∫
RN

1
(2π)m/2

exp
(
−1

2

(
ξ′′>ξ′′ + ξ∗>ξ∗

))
dξ′′

=

=
1

(2π)N/2
exp

(
−1

2
ξ′′>ξ′′

)
,

where we have used that
∫
Rn exp

(
−1

2y>y
)
dy = (2π)n/2 for all n ≥ 1. Now

the thesis follows by noting that the random variable fR(Ξ)|fR(W ) coincide
with Ξ′′.

Corollary 2.15. The conditional probability density of Ξ on W is

pΞ|W (ξ) =
1

(2π)N/2
exp

(
−1

2
(ξ − ξ∗)>(ξ − ξ∗)

)
,

where ξ ∈W .

Proof. From Proposition 2.13 (i) we know that fR|W is a bijection. Thus for
all ξ′′ ∈ RN there exists a unique ξ ∈W such that

(
0
ξ′′
)

= fR(ξ) = R(ξ−ξ∗).
Now it suffices to use this in the equation for pΞ′′(ξ

′′) in Theorem 2.14.

2.6.3 From the residuals space to the MOV

The first step of the procedure is the propagation of the probability density
function from the normalised residuals space to the Manifold Of Variations.
We recall that we start from the following density (see equation (2.12)):

pΞ(ξ) = N(0, Im)(ξ) =
1

(2π)m/2
exp

(
−1

2
ξ>ξ

)
.

From section 2.4 We have defined Q∗ to be the minimum value of the
target function overM, that is

Q∗ := min
ρ∈K′

Q(A∗(ρ),ρ).

Let us denote with ρ∗ ∈ K ′ the point in which the above minimum is
attained and with x∗ = fµ(ρ∗) = (A∗(ρ∗),ρ∗) the corresponding point on
the MOVM. Lastly, let ξ∗ – F (x∗) = ξ(x∗).

Theorem 2.16. By linearizing F around x∗, the conditional probability
density on Tx∗M is given by

pX|Tx∗M(x) =

exp

(
−χ

2(x)

2

)
∫
Tx∗M

exp

(
−χ

2(y)

2

)
dy

. (2.15)
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Proof. The map F is differentiable of class at least C1. The Jacobian matrix
of F is the design matrix B(x) = ∂F

∂x (x) ∈ M(m,N ;R). Since the doubly
constrained differential corrections converge to x∗, the matrix B(x∗) is full
rank. It follows that the map F is a local parameterization of

V := F (M) = {ξ ∈ Rm : ξ = F (x), x ∈M},

that turns out to be a 2-dimensional submanifold of the residuals space Rm,
in a suitable neighbourhood of ξ∗. Consider the differential

DFx∗ : Tx∗M→ Tξ∗V,

where Tξ∗V = {ξ ∈ Rm : ξ = ξ∗ + B(x∗)(x − x∗), x ∈ Tx∗M} is a 2-
dimensional affine subspace of Rm. We claim that ξ∗ is orthogonal to Tξ∗V :
since x∗ is a local minimum of the target function Q

0 =
∂Q

∂x
(x∗) =

2

m
ξ(x∗)>B(x∗),

that is ξ(x∗) = ξ∗ ∈ B(x∗)⊥. By applying Corollary 2.15 we have that

pΞ|Tξ∗V (ξ) =
1

2π
exp

(
−1

2
(ξ − ξ∗)>(ξ − ξ∗)

)
for ξ ∈ Tξ∗V . The differential map is continuous and invertible (since it is
represented by the matrix A(x∗), as in Proposition 2.12), thus we can use
the standard formula for the transformations of random variables to obtain

pX|Tx∗M(x) =

√
detC(x∗)

2π
exp

(
−1

2
(x− x∗)>C(x∗)(x− x∗)

)
,

for x ∈ Tx∗M, where C(x∗) is the 6 × 6 normal matrix of the differential
corrections leading to x∗. Furthermore, in the approximation used, we have

χ2(x) = mQ(x)−mQ∗ = (x− x∗)>C(x∗)(x− x∗),

so that for x ∈ Tx∗M

pX|Tx∗M(x) =

√
detC(x∗)

2π
exp

(
−χ

2(x)

2

)
.

Now the thesis follows by converting the constant to a normalising constant
be means of an integral.
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2.6.4 From the MOV to the AR

We use the results and definitions given in Appendix C. In particular, the
definition of the integral of a continuous function on a manifold is the anal-
ogous of the theorem of change of variables for integrals, thus it can be used
to propagate a probability density function on a manifold to a probability
density function over the space that parametrizes the manifold itself.

Theorem 2.17. Assuming (2.15), the probability density function of the
variable R is

pR(ρ) =

exp

(
−χ

2(ρ)

2

)√
Gµ(ρ)∫

K′
exp

(
−χ

2(ρ)

2

)√
Gµ(ρ) dρ

,

where χ2(ρ) = χ2(x(ρ)) and Gµ is the Gramian determinant

Gµ(ρ) = det

(
I2 +

(
∂A∗
∂ρ

(ρ)

)> ∂A∗
∂ρ

(ρ)

)
. (2.16)

Proof. We have already proved that the map fµ : K ′ → M is a global
parameterization ofM, thus from equation (C.1) we have that

pR(ρ) = pX|Tx∗M(fµ(ρ)) ·
√

det

[
∂fµ
∂ρ

(ρ)

]> ∂fµ
∂ρ

(ρ)

and the thesis follows since from equation (2.13)[
∂fµ
∂ρ

(ρ)

]> ∂fµ
∂ρ

(ρ) = I2 +

(
∂A∗
∂ρ

(ρ)

)> ∂A∗
∂ρ

(ρ).

In order to evaluate (2.16) we have to explicitly determine the expression
for the matrix

∂A∗
∂ρ

(ρ) ∈M(4, 2;R),

that accounts for the variation of A∗(ρ) as a function of ρ. This can be
done using the definition of A∗(ρ) as best-fit attributable, that is the fact
that A∗(ρ) is a local minimum of Q(A;ρ).

Proposition 2.18. Neglecting terms containing the second derivatives of
the residuals multiplied by the residuals themselves, for all ρ ∈ K ′ we have

∂A∗
∂ρ

(ρ) = −CA(A∗(ρ),ρ)−1BA(A∗(ρ),ρ)>Bρ(A∗(ρ),ρ).
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Proof. For every ρ ∈ K ′, by definition, the point x(ρ) = (A∗(ρ),ρ) ∈M is
a zero of the function g : X → R given by

g(x) :=
m

2

∂Q

∂A(x) = BA(x)>ξ(x).

The function g is continuously differentiable and we have

∂g

∂A(x) =
∂

∂A

(
∂ξ

∂A(x)

)>
ξ(x) +

(
∂ξ

∂A(x)

)> ∂ξ

∂A(x) '

'
(
∂ξ

∂A(x)

)> ∂ξ

∂A(x) = CA(x),

where we neglected terms containing the second derivatives of the residuals
multiplied by the residuals themselves. The matrix CA(x(ρ)) is invertible,
otherwise the doubly constrained differential corrections would have failed
and this is not the case since ρ ∈ K ′. By applying the implicit function
theorem, there exists a neighbourhood U of ρ, a neighbourhoodW of A∗(ρ),
a continuously differentiable function f : U →W such that, for all ρ̃ ∈ U it
holds

g(A∗, ρ̃) = 0⇔ A∗ = f(ρ̃),

and
∂f

∂ρ
(ρ̃) = −

(
∂g

∂A(A∗(ρ̃), ρ̃)

)−1 ∂g

∂ρ
(A∗(ρ̃), ρ̃). (2.17)

We already computed ∂g
∂A , so we proceed with the other derivative, that is

∂g

∂ρ
(x) =

∂

∂ρ

(
∂ξ

∂A(x)

)>
ξ(x) +

(
∂ξ

∂A(x)

)> ∂ξ
∂ρ

(x) '

'
(
∂ξ

∂A(x)

)> ∂ξ
∂ρ

(x) = BA(x)>Bρ(x).

We finally use equation (2.17) with ρ̃ = ρ and the expressions for the deriva-
tives of g to complete the proof.

2.6.5 From the AR to the sampling space

The last step in the propagation of the probability density function consists
in applying the map fσ : S′ → K ′, where S′ := f−1

σ (K ′) is the portion of
the sampling space mapped onto K ′. Since fσ is a map between two 2-
dimensional spaces, the propagation is simpler with respect to the previous
map, since it is based through the computation of the Jacobian determinant
of fσ only.
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Theorem 2.19. Assuming (2.15), the probability density function of the
variable S is

pS(s) =

exp

(
−χ

2(s)

2

)√
Gµ(s)

√
Gσ(s)∫

f−1
σ (K′)

exp

(
−χ

2(s)

2

)√
Gµ(s)

√
Gσ(s) ds

, (2.18)

where χ2(s) = χ2(x(ρ(s))), Gµ(s) = Gµ(ρ(s)), and Gσ is the Gramian of
the columns of Dfσ(s), so that√

Gσ(s) = |detDfσ(s)|.

The determinant detDfσ(s) depends on the sampling technique:

(i) if the sampling is uniform in ρ then detDfσ(s) = 1 for all s ∈ S =
R+ × R;

(ii) if the sampling is uniform in the logarithm of ρ then detDfσ(s) =
log(10)ρ(s) for all s ∈ S = R2;

(iii) in the case of the spider web sampling detDfσ(s) = r
√
λ1λ2 for all

s ∈ R+ × S1.

Proof. Equation (2.18) directly follows from the transformation law for ran-
dom variables between spaces of the same dimension: it suffices to change
the variables from the old ones to the new ones and multiply for the modulus
of the determinant of the Jacobian of the inverse transformation, that is fσ.
The computation of detDfσ(s) is straightforward for the cases (i) and (ii).
In the spider web case (iii) the map fσ is given by (2.8) and its Jacobian
matrix is

Dfσ(s) =

(
vx1
√
λ1 cosϑ− vy1

√
λ2 sinϑ r

(
−vx1
√
λ1 sinϑ− vy1

√
λ2 cosϑ

)
vx1
√
λ2 sinϑ+ vy1

√
λ1 cosϑ r

(
vx1
√
λ2 cosϑ− vy1

√
λ1 sinϑ

) )
where λ1 > λ2 are the eigenvalues of Γρρ(x(s)) and v1 = (vx1 , v

y
1) the unit

eigenvector related to λ1. The determinant is thus

detDfσ(s) = r
√
λ1λ2(v1 · v1) = r

√
λ1λ2.
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2.7 Extras on the probability density propagation

2.7.1 Conditional density on each attributable space

In this section we prove that the conditional density of the attributable A
given ρ = ρ0 ∈ K ′ is Gaussian. To this aim, we indicate with A and R the
random variables defined on the space A and R, respectively.

Once ρ0 ∈ K ′ has been fixed, consider the fibre of ρ0 with respect to the
projection from X to R, so that

Hρ0
:= A× {ρ0} = {(A,ρ0) : A ∈ A}.

The fibre Hρ0 is diffeomorphic to A and thus Hρ0 is a 4-dimensional sub-
manifold of X , actually a 4-dimensional affine subspace, and the collection
{Hρ0}ρ0∈K′ is a 4-dimensional foliation of A×K ′ ⊆ X . Theorem 2.20 gives
a probability density function on each leave of this foliation. Moreover, let
us denote by ϕρ0 : A → Hρ0 the canonical diffeomorphism between A and
Hρ0 , that is ϕρ0(A) – (A,ρ0) for all A ∈ A.

Theorem 2.20. For each ρ0 ∈ K ′, the conditional probability density func-
tion of A given R = ρ0 is

pA|R=ρ0
(A) = N

(
A∗(ρ0), CA(ρ0)−1

)
(A) =

=

√
detCA(ρ0)

(2π)2
exp

(
−1

2
(A−A∗(ρ0))>CA(ρ0) (A−A∗(ρ0))

)
,

where we have used the compact notation CA(ρ0) – CA(A∗(ρ0),ρ0).

Proof. Define the map Gρ0
:= F ◦ ϕρ0 : A → Rm. The differential of Gρ0

is represented by the design matrix BA ∈ M(m, 4;R) introduced in (2.9).
Consider the point x0 = (A∗(ρ0),ρ0) ∈ Hρ0 , where A∗(ρ0) is the best-fit
attributable corresponding to ρ = ρ0, that exists since ρ0 ∈ K ′. Given that
the doubly constrained differential corrections converge to x0, the matrix
BA(x0) is full rank. It follows that the map Gρ0 is a global parameterization
of

Vρ0
:= Gρ0(A) = F (Hρ0) = {ξ ∈ Rm : ξ = F (A,ρ0), A ∈ A},

that turns out to be a 4-dimensional submanifold of the residuals space
Rm, at least in a suitable neighbourhood of ξ0 := F (x0) = Gρ0(A0(ρ0)).
The map Gρ0 induces the tangent map between the corresponding tangent
bundles

DGρ0 : TA→ TVρ0 .
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In particular we consider the tangent application

(DGρ0)A∗(ρ0) : TA∗(ρ0)A→ Tξ0Vρ0 .

To use this map for the probability density propagation, we first need to
have the probability density function on Tξ0Vρ0 , that is an affine subspace
of dimension 4 in Rm. By Theorem 2.14 we have that the conditional prob-
ability density of Ξ on Tξ0Vρ0 is N(0, I4). Let R represent the rotation of
the residuals space Rm such that condition (2.14) holds for all ξ′′ ∈ R4, and
let A(x0) ∈ M(4;R) as in Proposition 2.12, so that the matrix A(x0)−1

represents the inverse map
(
(DGρ0)A∗(ρ0)

)−1. By the transformation law
of a Gaussian random variable under the linear map A(x0)−1, we obtain a
probability density function on the attributable space A given by

pA(A) = N(A∗(ρ0),ΓA(A∗(ρ0)))(A),

where A is the random variable on A and

ΓA(A∗(ρ0)) = A(x0)−1I4(A(x0)−1)> = A(x0)−1(A(x0)−1)>.

As a consequence, the normal matrix of the random variable A is

A(x0)>A(x0) = BA(x0)>R>RBA(x0) = BA(x0)>BA(x0) = CA(x0),

which is in turn the normal matrix of the doubly constrained differential
corrections leading to x0, computed at convergence. This completes the
proof since A and A × {ρ0} are diffeomorphic and thus the density pA(A)
is also the conditional density of A given R = ρ0.

2.7.2 Full non-linear propagation

In this section we derive the equation of the probability density function
on the space R obtained by a full non-linear propagation of the probability
density on the residuals space. In particular, the map F is not linearized
around x∗, as assumed in Theorem 2.19. This causes the inclusion in equa-
tion (2.15) of the contribution of the normal matrix C as it varies along the
MOV, and not the fixed contribution C(x∗) coming from the orbit x∗ with
minimum value of χ.

With the inclusion of all the non-linear terms, the resulting density of
R has the same form as the Jeffreys’ prior and thus is affected by the same
pathology discussed in Section 2.5 and in Farnocchia et al. (2015c). This is
the motivation for which we adopted the approach presented in Section 2.6.
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Theorem 2.21. The probability density function of the variable R resulting
from a full non-linear propagation is

pR(ρ) =

exp

(
−χ

2(ρ)

2

)√
detCρρ(ρ)∫

K′
exp

(
−χ

2(ρ)

2

)√
detCρρ(ρ) dρ

,

where Cρρ = Γ−1
ρρ and Γρρ ∈ M(2;R) is the restriction of the covariance

matrix Γ to the R space.

Proof. We have already proved that the map fµ : K ′ → M is a global
parameterization of M. From the properties of the map F it is easy to
prove that the map F ◦ fµ : K ′ → F (M) is a global parameterization of the
2-dimensional manifold V = F (M). From equation (C.1) we have that

pR(ρ) = pΞ(ξ(ρ)) ·
√

det

[
∂(F ◦ fµ)

∂ρ
(ρ)

]> ∂(F ◦ fµ)

∂ρ
(ρ).

By the chain rule

∂(F ◦ fµ)

∂ρ
(ρ) =

∂F

∂x
(x(ρ))

∂fµ
∂ρ

(ρ) = B(x(ρ))

∂A∗∂ρ
(ρ)

I2

 ,

so that the Gramian matrix results to be[
∂(F ◦ fµ)

∂ρ

]>∂(F ◦ fµ)

∂ρ
=

∂A∗∂ρ

I2

>B>B
∂A∗∂ρ

I2

 =

=

(
∂A∗
∂ρ

)>
CAA

∂A∗
∂ρ

+ CρA
∂A∗
∂ρ

+

(
∂A∗
∂ρ

)>
CAρ + Cρρ,

where the matrices CAA = CA, CAρ, CρA = C>Aρ, and Cρρ are the restric-
tions of the normal matrix C(x(ρ)) to the corresponding subspace. From
Proposition 2.18 we have

∂A∗
∂ρ

= −C−1
A B>ABρ = −C−1

A CAρ,

so that the previous expression becomes[
∂(F ◦ fµ)

∂ρ

]> ∂(F ◦ fµ)

∂ρ
= C>AρC

−1
A CAρ − 2C>AρC

−1
A CAρ + Cρρ =

= Cρρ − C>AρC−1
A CAρ = Cρρ = Γ−1

ρρ ,

where the last equality is proved in Milani et al. (2010), Section 5.4.
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2.8 Use of the probability density function

2.8.1 Impact probability computation

Each point on the MOV can be thought as orbit compatible with the obser-
vations, and we call each point a Virtual Asteroid (VA). We propagate the
VAs into the future, currently for 30 days from the date of the observations
and we search for Virtual Impactors (VIs), which are connected sets of initial
conditions leading to an impact (Milani et al. 2005b). If a VI has been found
on the Modified Target Plane (MTP; Milani et al. (1999)), it is associated
with a subset V ⊆ S of the sampling space, and hence its probability is

P(V) =

∫
V
pS(s) ds =

=

∫
V

exp

(
−χ

2(s)

2

)√
Gµ(s)

√
Gσ(s) ds∫

f−1
σ (K′)

exp

(
−χ

2(s)

2

)√
Gµ(s)

√
Gσ(s) ds

(2.19)

If for a given object we find impacting solutions, we assign to the object
an impact flag, which is an integer number related to the computation of
the impact probability. In fact, the impact flag depends on the impact
probability and on the arc curvature, as follows:

(1) if IP ≤ 10−4 the impact flag is 0;

(2) if 10−4 < IP ≤ 10−3 the impact flag is 1;

(3) if 10−3 < IP ≤ 10−2 the impact flag is 2;

(4) if IP > 10−2 and the arc does not have significant curvature the impact
flag is 3;

(5) if IP > 10−2 and the arc has significant curvature the impact flag is 4.

The significance of the curvature of an arc can be assessed through the
computation of the covariance of the geodesic curvature and the acceleration,
and in turn of the χ value. Following the approach of Milani et al. (2007), we
say that an arc has significant curvature if χ2 > 10. The impact flag can take
the integer values from 0 to 4: 0 indicates a negligible chance of collision with
the Earth, whereas the maximum value 4 expresses an elevated impact risk
(≥ 1%). The impact flag is conceived as a simple and direct communication
tool to assess the importance of collision predictions and give priority to the
follow-up activities.
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2.8.2 Score computation

When we perform the sampling of the Admissible Region, either by the two
grids method or by the spider web technique, we also compute a score for
the object (see Section 2.3) to belong to certain classes of Solar System
objects. The score gives us a first insight into the nature of the object, even
though the asteroid were not a potential impactor. Furthermore, the score
is a rigorous probability of the object to belong to different classes (NEO,
MBO, DO, and SO).

The four class that we included in the score computation are defined by
the following conditions:

• NEO: Near Earth Object, an object with q < 1.3 au, where q is the
perihelion distance (in au).

• MBO: Main Belt Object, belonging either to the Main Belt or to the
Jupiter Trojans. In particular we choose the conditions{

1.7 au < a < 4.5 au
e < 0.4

or
{

4.5 au < a < 5.5 au
e < 0.3

where a is the semi-major axis (in au), and e is the eccentricity.

• DO: Distant Object, characterised by q > 28 au.

• SO: Scattered Object, an asteroid not belonging to any of the previous
classes.

In this way, each class corresponds to a subset of the sampling space S. As
a consequence, the probability to belong to a certain class is the integral of
the probability density pS(s) over the corresponding subset of S.

2.9 Results

We have set up a service dedicated to the scan of the Minor Planet Center
NEO Confirmation Page7 (NEOCP). The service is called NEOScan. Its goal
is to identify asteroids as NEOs, MBOs or distant objects to be confirmed or
removed from the NEOCP, and to give early warning of imminent impactors,
to trigger immediately follow-up observations. All the results are available at
the web page http://newton.dm.unipi.it/neodys2/NEOScan/index.html
and the software used is a new version of the OrbFit Software version 5.08.

7http://www.minorplanetcenter.net/iau/NEO/toconfirm_tabular.html
8http://adams.dm.unipi.it/orbfit/

http://newton.dm.unipi.it/neodys2/NEOScan/index.html
http://www.minorplanetcenter.net/iau/NEO/toconfirm_tabular.html
http://adams.dm.unipi.it/orbfit/
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The service involves the following steps, based on the algorithm presented
in Sections 2.3.2 and 2.5.

• Scanning of the NEOCP every 2 minutes. New cases or old cases just
updated are immediately run.

• Computation and sampling of the Admissible Region using a 2-dimensional
representation in the (ρ, 9ρ) plane with a either grid or a spider web.

• Computation of the MOV, obtaining a set of VAs.

• Propagation of the VAs in the future (currently for 30 days).

• Projection on the Modified Target Plane, searching for VIs.

• If VIs exist, computation of the Impact Probability.

The time required to run one target strictly depends on the character-
istics of the object, but usually it is between 15 and 20 minutes. When
predicting possible imminent impacts, one of the most important require-
ments to fulfil is to minimise the number of unjustified alarms. We mark as
non-significant the cases for which there are either less than 3 observations
or the arc length is less than 30 minutes, unless there exists a nominal so-
lution with a geodesic curvature SNR greater than 1. The classification of
a certain case as non-significant does not mean we skip the computations:
we anyway perform all the steps of the algorithm and assign the scores and
the impact flag. Nevertheless, being non-significant automatically decreases
the priority of the object in case of an alarm. Unfortunately, all of these
techniques are not enough and some spurious cases remain. They could arise
when the astrometry is either known to be erroneous or noisy, or anyway
not reliable. We cannot solve this problem, because it is contained by the
data on which the system performs the computations, and we acknowledge
that the astrometric error models based on large number statistic are not
enough to distinguish erroneous and accurate astrometry in a small sample
(see comments in Section 2.10).

We have tested the algorithm on the two well known cases of NEAs that
have impacted the Earth a few hours after the discovery, namely 2008 TC3

and 2014 AA. We have already pointed out that the choice of the weights
is very important in these cases: to be able to compare the results with
Farnocchia et al. (2015c), we have chosen the same weights. Furthermore,
we have also selected some cases among the objects that will not impact
to show the importance of computing the score, and not only the impact
probability, and to show the importance of having a system like the one we
have developed.
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There is another online system, namely Scout9 (Farnocchia et al. 2016),
developed by the JPL team and that substantially accomplishes the same
objective as NEOScan. Indeed, Scout continually monitors the objects on
the NEOCP and for each provides orbital information, the impact risk anal-
ysis and the possibility to compute ephemerides. Thus, in the same vein as
clomon-2 and Sentry, the two systems NEOScan and Scout are redundant
system, in the sense that the comparison of their results provides verifica-
tion and validation. More recently, Solin et al. (2018) present neoranger,
a third system with analogous purposes as NEOScan and Scout. So far,
the system is not online but, when available, it will constitute a third cross
check for the hazard assessment of NEOCP objects.

2.9.1 Graphical representation of the results

We present our results with plots showing the AR and its sampling. Here-
inafter we describe the colour code present in our figures. Concerning the
AR, we make use of the following lines.

• The red solid line represents the level curve of the heliocentric energy
equal to −k2/(2amax). Namely, it is the outer boundary of the AR,
corresponding to the boundary of the region defined by condition 1 in
Section 2.3.

• The green dashed line shows where the geocentric energy is equal to 0,
also taking into account the condition about the radius of the Earth
sphere of influence, as discussed in Section 2.3

• The magenta dashed line (which is parallel to the range-rate axis)
represents the shooting star limit condition.

• The magenta solid lines (which are parallel to the range-rate axis)
represent different values of the absolute magnitude.

We now provide a description of the colours used for the sampling points.
No point is denoted if the four-dimensional differential corrections does not
converge because the point does not belong to the MOV.

• The dots are indicated in blue if χ ≤ 2, and green if 2 < χ ≤ 5.

• The dots are indicated in black if χ > 5.

• In case a VI has been found, we show the points representing possible
impacting orbits with red circles.

• The orange star represents the point with the minimum value of χ.
9https://cneos.jpl.nasa.gov/scout/#/

https://cneos.jpl.nasa.gov/scout/#/
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2.9.2 Asteroid 2008 TC3

Asteroid 2008 TC3 was discovered by Richard A. Kowalski at the Catalina
Sky Survey on October 7, 2008. The object was spotted 19 hours before the
impact, and it is the first body to be observed and tracked prior to falling
on the Earth. After the discovery, hundreds of astrometric observations
were submitted to the Minor Planet Center and these observations allowed
the computation of the orbit and the prediction of the impact. We use the
first tracklet composed by four observations, and then the first two tracklets
(seven observations) to ascertain whether we could predict the impact.
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Figure 2.1. Top panel. Grid sample of the (ρ, 9ρ) space for the first 4 observations of
2008 TC3. Bottom panel. Spider web for the first 7 observations of 2008 TC3.
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We compute a uniform densified grid in log10 ρ (Figure 2.1, top panel)
where we consider only the first four observations, since the unique positive
root r1 is <

√
10 au. Using seven observations we are able to compute a re-

liable nominal orbit and the consequent spider web using seven observations
(Figure 2.1, bottom panel). Table 2.1 shows that with four observations and
using the grid we are able to predict a possible impact of the object with the
Earth with an impact probability of ' 3.6%, and the score of the object to
be classified as a NEA is 100%. This would have produced an alert for the
observers that could have immediately followed up the object. With seven
observations we can confirm the certainty that the asteroid is a NEA (score
= 100%), and the impact probability increases to 99.7%. Both these re-
sults, in terms of impact probability, are in very good agreement with those
reported in Farnocchia et al. (2015c, Table 2).

2.9.3 Asteroid 2014 AA

Asteroid 2014 AA was discovered by Richard A. Kowalski at the Catalina
Sky Survey on the New Year’s Eve of 2014. The object was discovered
21 hours before the impact, but it has not been intensively followed up as
2008 TC3 because of the exceptional night in which it has been spotted. We
initially used the first tracklet composed of three observations, and then the
whole set of seven observations to test whether we could have predicted the
impact with our method.

These two examples have several analogies. We compute a uniform densi-
fied grid in log10 ρ with the first tracklet, which contains only 3 observations
(Figure 2.2, top panel), and we are able to compute a reliable orbit and
the consequent spider web only with seven observations (Figure 2.2, bot-
tom panel). Table 2.1 shows that using the first tracklet only, we are able
to predict a possible impact with the Earth with an impact probability of
' 3.0%, and the NEA score of the object is 100%. Again, this would have
produced an alert for the observers that could have immediately followed
up the object. As in the previous case, with the second tracklet we confirm
both that the asteroid is a NEA (score = 100%) and the collision, since the
impact probability increases to 100%. Also in this case the results are very
compatible with those presented in Farnocchia et al. (2015c, Table 2).

2.9.4 Asteroid 2014 QF433

The previous examples show how systematic ranging is capable of identifying
imminent impactors. Although this is one of the most important applications
of this technique, systematic ranging is also essential in the first short arc
orbit determination process.
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Table 2.1. Results of systematic ranging applied to 2008 TC3 and 2014 AA. The
columns contain the name of the object, number of observations used, time span cov-
ered by the observations, characteristic of the sampling used to compute the MOV (grid
or spider web), score of the object (NEO, MBO or Distant), and impact probability.

Name # Obs. Time span Sampling Score IP(min) Grid/Spider NEO MBO DO
2008 TC3 4 43 log10 ρ - grid 100% 0 0 3.6%
2008 TC3 7 99 Spider 100% 0 0 99.7%
2014 AA 3 28 log10 ρ - grid 100% 0 0 3.0%
2014 AA 7 28 Spider 100% 0 0 100.0%

10
-4

10
-3

10
-2

10
-1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

1.5 2 2.5 3 3.5 4

10
-3

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

10
-3

Figure 2.2. Top panel. Grid sample of the (ρ, 9ρ) space for the first 3 observations of
2014 AA. Bottom panel. Spider web for the whole set of 7 observations of 2014 AA.
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Asteroid 2014 QF433 was discovered by F51 - Pan-STARRS 1, Haleakala
on August 26, 2014. The first four observations were posted on the NEO
Confirmation Page, with the temporary designation TVPS7NV. This aster-
oid remained on the NEOCP until September 5, 2014. On that day (with 18
observations) it was confirmed to be a distant object by the Minor Planet
Center.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

40 45 50 55 60

-1

0

1

2

3

4

5

6

10
-3

Figure 2.3. Top panel. Grid sample of the (ρ, 9ρ) space for the first 4 observations
of 2014 QF433. Bottom panel. Enlargement of the second component. The black
star in the second component represents the orbit of the object computed with all the
available observations.
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Figure 2.3 shows the results of systematic ranging on this asteroid with
only four discovery observations and 51 minutes of arc length. In this case
the AR has two connected components, indicating the possibility for the
object to be distant. The values of the three positive roots of the equation
of degree 6 are r1 = 1.103 au, r2 = 40.072 au, and r3 = 59.786 au. The
attributable is

A = (α, δ, 9α, 9δ) =

= (5.7358902,−0.3008327,−3.35275 · 10−4,−9.94065 · 10−5),

with α and δ in radians and 9α and 9δ in radians per day. The two plots in
Figure 2.3 strongly suggests that the object is distant, since almost all the
grid points corresponding to the MOV lie in the second connected compo-
nent. As a consequence, the cumulative score for the Distant and Scattered
classes is ' 99%.

As a further validation, we take the orbital elements of this asteroid
from the AstDyS database10, and we compute the range and the range-rate
at the epoch of the attributable. The result is shown in the right panel of
Figure 2.3: the black star represents the orbit of 2014 QF433 computed with
all the available observations and is in perfect agreement with the systematic
ranging sampling.

2.9.5 Asteroid 2017 AE21

The case of 2017 AE21 shows the importance of score computation. This
object is worthy of attention even though it is not an impactor; for instance,
it could be a potential NEA.

Asteroid 2017 AE21 was discovered by F51 - Pan-STARRS 1, Haleakala
on January 3, 2017. It appeared on the NEOCP as a tracklet of three
observations spanning 30 minutes with the temporary designation P10yBuc.
This object was confirmed to be a NEA on January 24, 2017, when it had
five observations. With the first tracklet, our system produces an impact
flag of 2, indicating a modest impact risk and an impact probability IP =
2 · 10−3. Moreover, the NEO score is 92%, which encouraged some follow-
up observations of the object. The left panel of Figure 2.4 shows the result
when using the first tracklet only. We do not have any reliable nominal orbit
to use, and as a consequence we adopt the grid sampling. The portion of
the grid corresponding to low χ values (blue points) is very wide, indicating
a great uncertainty in the orbit determination, and the uncertainty region
also contains impacting solutions.

10Asteroid Dynamics Site, available at http://hamilton.dm.unipi.it/astdys/

http://hamilton.dm.unipi.it/astdys/
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Figure 2.4. Top panel. Grid sample of the (ρ, 9ρ) space for the first 3 observations
of 2017 AE21. Bottom panel. Grid sample for the whole set of 5 observations of
2017 AE21. In both cases we do not have any reliable nominal orbit to use, and as a
consequence we adopt the grid sampling.

With just two additional observations, the differential corrections still fail
to compute a reliable nominal orbit, but now the good portion of the grid is
located in a small subregion of the AR (see Figure 2.4, bottom panel). In this
case the uncertainty region does not contain impacting orbits, thus we get an
impact flag of 0, where IP = 0, whereas the NEO score increases to 100%.
As a consequence, the new observations contradicts the low probability VI,
but the follow-up suggestion coming from the high 98% NEO score of the
first run is reliable.
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2.9.6 NEOCP object P10vxCt

As we stated in the introduction of this section, noisy astrometry can be the
cause of unjustified alarms. In fact, if an object has a single tracklet of few
observations and one of these is erroneous, the arc usually shows a significant
curvature, implying that the object seems very close and fast moving. Most
likely, it could be classified as an immediate impactor with very high impact
probability.

Table 2.2. Astrometric data for NEOCP object P10vxCt. First tracklet with 3
observations (above), and remeasurement of the first tracklet from the discovery images
(below).

Date (UTC) α δ R Code
2016-06-08.29327 13 13 16.962 −20 25 56.90 21.0 F51
2016-06-08.30357 13 13 12.688 −20 28 31.36 20.9 F51
2016-06-08.32416 13 13 04.699 −20 33 46.35 21.0 F51

Date (UTC) α δ R Code
2016-06-08.293273 13 13 16.963 −20 25 56.53 20.3 F51
2016-06-08.303571 13 13 12.856 −20 28 33.24 20.5 F51
2016-06-08.324159 13 13 04.683 −20 33 46.33 20.4 F51

Object P10vxCt was spotted by F51 - Pan-STARRS, Haleakala on June
8, 2016. The first time it appeared on the NEOCP it had a tracklet with
three observations spanning about 44 minutes (see Table 2.2, upper table).
It has never been confirmed, but it is in any case an important example
to show the risk posed by noisy astrometric data. With the first three
observations, our system computes a nominal solution compatible with a
very close orbit, resulting in a spider web sampling over a small subset of the
AR (see Figure 2.5, left panel). A very large percentage of the MOV orbits
are solutions with possible impacts and it results in an impact probability of
99.2% and impact flag 4, considering the significance of the curvature. The
second batch of observations consists of four positions, three of which are
a remeasurement of the first tracklet obtained from the discovery images of
the object, plus an additional observation. With this new astrometry, the
impact was ruled out and the object was removed from the NEOCP.

To show the role of the remeasurements in the impact removal, we only
consider the three remeasured observations (see Table 2.2, lower table). The
second observation in the first tracklet was badly determined because it was
off by about 3 arcsec from the corresponding observation in the second batch.
The effect of this shift can be seen in the curvature parameters κ (geodesic
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Figure 2.5. Top panel. Grid sample of the (ρ, 9ρ) space for the first 3 observations of
P10vxCt. Bottom panel. Grid sample for their remeasurement of P10vxCt.

curvature) and 9η (acceleration). For the first tracklet we have

κ1 = (1.0073± 0.1015) · 10−3 and 9η1 = (3.218± 1.013) · 10−4,

while for the remeasured tracklet

κ2 = (6.49± 67.49) · 10−5 and 9η2 = (−4.30± 67.50) · 10−5,

which are both significantly lower than the values obtained for the origi-
nal tracklet (see Figure 2.6 for a graphic representation of the two arcs).
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Figure 2.6. Plot of the two batches of observations reported in Table 2.2, for NEOCP
object P10vxCt. The red line represents the originally submitted tracklet, whereas the
blue line the remeasured tracklet. The higher curvature of the first arc with respect to
the second is clear.

Moreover, as we can see from the curvature uncertainties, both curvature
components are not significantly different from zero. As a consequence, the
impact solution is sharply downgraded in the remeasured observations alone;
a nominal solution cannot be computed anymore, resulting in a grid sam-
pling of the AR, and the impact orbits are a very small fraction of the MOV
orbits (see Figure 2.5, right panel). Thus the impact probability lowers to
about IP = 7.5 · 10−5, with an impact flag of 1.

Providing remeasured observations is not the only way to solve the prob-
lem caused by bad astrometry. The second observation is not as good as
the other two, and let us suppose this information were provided along with
the observation itself. In this case, we could have properly down-weighted
the second observation to take into account the additional information, and
the case would have been solved. To prove this claim, we assign a formal
uncertainty of 3 arcsec to both the right ascension and the declination of the
second observation. With this choice, the impact solution still remain, but
with an impact probability IP = 4.4 · 10−4. Until this additional metadata
will be provided together with the observations, cases like the one presented
here can be solved only by a manual intervention after all the computa-
tions (remeasurement) or by a fast follow-up (see Section 2.10 for general
comments on this issue).
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2.10 Conclusions

One of the main issue in the impact hazard assessment for imminent im-
pactors is given by the computation of the impact probability. The main
results of this chapter are a new argument to propagate the probability den-
sity function from the space of the astrometric residuals to the Manifold Of
Variation, a geometric device to sample the set of possible orbits available
even after a very short observed arc, and then to the (ρ, 9ρ) space R. In pre-
vious works, this computation was conducted with the assumption of an a
priori probability density function on the space R, and this step was needed
to pass from the probability density function on the residuals space to a
probability density function on the space R (see Section 2.5). Our compu-
tation is complete, rigorous, and uses no a priori probability distributions,
since it only assumes that the residuals can be modeled with a Gaussian
random variable.

Does this new algorithm solve the problem of assessing the risk of immi-
nent impacts from a freshly discovered asteroid, with observations limited to
1–2 tracklets? By using the Admissible Region and one of our grid sampling,
we have shown how to approximate a probability integral on the portion of
the MOV leading to an imminent impact, if it is found. However, to accept
this integral as impact probability we need to check three conditions.

First, the probability density on the space of residuals needs to be based
upon a probabilistic model of the astrometric errors, taking into account the
past performances of the observatories. Second, the observations used in the
computation must be “typical” of the observatory: even the best astronomi-
cal program produces a comparatively small subset of “faulty” observations,
with errors much larger than the usual ones. Third, we should assume that
the small sample of observations has statistical properties, such as mean and
standard deviation (STD), close to the ones of the full distribution.

The first hypothesis is reasonable, in that a lot of work has been de-
veloped in the last 20 years to produce astrometric error models for as-
teroid observations (see Carpino et al. (2003), Chesley et al. (2010), Baer
et al. (2011b), Farnocchia et al. (2015b)). These models are not perfect,
but they represent an increasingly reliable source of statistical information.
The second hypothesis is not trivial: the current format for asteroid ob-
servations does not contain sufficient metadata to discriminate the “weak
observations” from the good ones. The full adoption of the new Astromet-
ric Data Exchange Standard (ADES11), approved by the IAU in 2015, will
provide information such as SNR, timing uncertainty, and so on, allowing to
adapt the weighting of the individual observations. The example of P10vxCt

11It is available at https://github.com/IAU-ADES/ADES-Master.

https://github.com/IAU-ADES/ADES-Master
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shows how just one lower quality observation can completely spoil the orbit
results, generating a false impact alarm. This can be avoided either with re-
measuring by the observer or with careful weighting by the orbit computer,
provided such down-weighting is supported by the metadata.

The third hypothesis is the most troublesome. Assuming that the proba-
bility density of an astrometric error model is a perfect statistical description,
then by the law of large numbers a large enough sample of N observations
shall have approximately the same statistical properties of the model, with
the differences going to zero for N → +∞ (law of large numbers). Unfor-
tunately, N = 3, 4, 5 is not large enough for the law of large numbers to
apply. For instance, a tracklet with N = 3 observations can have all the
observations in one coordinate with errors > 2.5 STD: this statistical fluke
would be very rare, occurring in a little more than 1 tracklet over 1 million.
Still, if a large asteroid survey submits to the MPC more than one million
tracklets per year, such a fluke may occur about once a year, whereas the
discovery of imminent impactors is currently more rare (2 in 10 years). De-
tection of a rare astronomical event cannot be a priori discriminated from
rare statistical events.

The tests on real cases discussed in this paper, and many more simulated,
convinced us that our algorithm computes a reliable impact probability when
the impact actually occurs. Nevertheless, we cannot show that our algorithm
is immune from “false” alarms. They are not false in the sense of a wrong
computation, or even worse a malicious disinformation, they are statistical
flukes which cannot be avoided because of lack of information (hypothesis 2)
and the need to use statistics on a small sample (hypothesis 3). The ques-
tion is what should be done to mitigate the damage by these false alarms,
given that we cannot avoid disseminating them: otherwise, how could we
disseminate the alarm in the true case?

The only answer is to have a follow-up chain which does not waste re-
sources: the discoverers could themselves either remeasure or follow-up on
the short term, like 1 hour after discovery, the cases announced as possi-
ble impactors. Other telescopes should be available to perform follow-up, to
avoid improper use of survey telescopes for a less demanding task. The ideal
solution should be the availability of a Wide Survey, capable of covering the
entire dark sky every night and of detecting, e.g., an asteroid with absolute
magnitude H = 28 at 0.03 au distance (near opposition). Then the same
asteroid would be recovered by the survey the next day, before the impact,
and without the need for auxiliary follow-up.





Chapter 3
Detecting the Yarkovsky effect
among near-Earth asteroids from
astrometric data

3.1 Introduction

Several complex phenomena cause asteroid orbital evolution to be a difficult
problem. By definition, Near-Earth Asteroids (NEAs) experience close ap-
proaches with terrestrial planets, which are the main source of chaos in their
orbital evolution. Small perturbations, such as non-gravitational perturba-
tions, can significantly affect a NEA trajectory because of this chaoticity.

The Yarkovsky effect is due to the recoil force undergone by a rotating
body as a consequence of its anisotropic thermal emission (Vokrouhlický
et al. 2000; Vokrouhlický et al. 2015a). The main manifestation of the
Yarkovsky effect is a secular semimajor axis drift da/dt, which leads to a
mean anomaly runoff that grows quadratically with time. Typical values
of this perturbation for sub-kilometre NEAs are da/dt ' 10−4-10−3 au/My.
Because of its small size, the Yarkovsky effect can only be detected for
asteroids with a well constrained orbit.

The Yarkovsky effect is a non-gravitational perturbation that is gener-
ally split into a seasonal and a diurnal component. The seasonal component
arises from the temperature variations that the heliocentric asteroid expe-
riences as a consequence of its orbital motion. An explicit computation of
the corresponding acceleration is not easy, even for a spherical body, and
becomes very difficult for complex shaped bodies. On the other hand, the
diurnal component is due to the lag between the absorption of the radia-
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tion coming from the Sun, and the corresponding re-emission in the ther-
mal wavelength. The surface of a rotating body illuminated by the Sun is
warmed by solar radiation during the day and cools at night. It is worth
noticing that the diurnal and the seasonal components have different conse-
quences on the secular semimajor axis drift. In particular, the diurnal effect
produces a positive drift for prograde rotators and a negative drift for ret-
rograde rotators, whereas the seasonal secular drift is always negative. The
magnitude of the diurnal effect is generally larger than that of the seasonal
effect (Vokrouhlický et al. 2000).

The Yarkovsky effect is key to understanding several aspects of asteroid
dynamics:

1. Non-gravitational forces can be relevant for a reliable impact risk as-
sessment when in the presence of deep planetary encounters or when
having a long time horizon for the potential impact search (Farnocchia
et al. 2015a). As a matter of fact, both these factors call for a greater
consideration of the sources of orbit propagation uncertainty, such as
non-gravitational perturbations. Currently, there are four known cases
that required the inclusion of the Yarkovsky effect in term of hazard
assessment: (101955) Bennu (Milani et al. 2009; Chesley et al. 2014),
(99942) Apophis (Chesley 2006; Giorgini et al. 2008; Vokrouhlický et
al. 2015b; Farnocchia et al. 2013), (29075) 1950 DA (Giorgini et al.
2002; Farnocchia et al. 2014a), and (410777) 2009 FD (Spoto et al.
2014).

2. The semimajor axis drift produced by the Yarkovsky effect has sculpted
the main belt for millions of years (Vokrouhlický et al. 2006). The
Yarkovsky effect is crucial to understanding the ageing process of as-
teroid families and the transport mechanism from the main belt to the
inner Solar System (Vokrouhlický et al. 2000). The Yarkovsky effect
has still not been measured in the main belt, thus Spoto et al. (2015)
used a calibration based on asteroid (101955) Bennu to compute the
ages of more than 50 families in the main belt. The improvement in
the detection of the Yarkovsky drift for NEAs represents a new step
forward in creating a reliable chronology of the asteroid belt.

3. Yarkovsky detections provide constraints on asteroid physical prop-
erties. Two remarkable efforts in estimating the bulk density from
the Yarkovsky drift have already been carried out for two poten-
tially hazardous asteroids: (101955) Bennu (Chesley et al. 2014) and
(29075) 1950 DA (Rozitis et al. 2014). Furthermore, the dependence
of the Yarkosvky effect on the obliquity can be useful to model the
spin axis obliquity distribution of NEAs (Tardioli et al. 2017).
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There have been several efforts to model and determine the Yarkovsky ef-
fect on the NEA population. The first detection of the Yarkovsky effect was
predicted for the asteroid (6489) Golevka in Vokrouhlický et al. (2000) and
achieved in 2003 thanks to radar ranging of this object (Chesley et al. 2003).
Later, the Yarkovsky effect played a fundamental role in the attribution of
four 1953 precovery observations to the asteroid (152563) 1992 BF (Vokrouh-
lický et al. 2008). Moreover, Chesley et al. (2014) detected the Yarkovsky
effect acting on (101955) Bennu from the astrometric observations and from
high-quality radar measurements over three apparitions. Currently, asteroid
Bennu has the best determined value for the Yarkovsky acceleration, which
also led to an estimation of its bulk density (Chesley et al. 2014). More in
general, Nugent et al. (2012) provided a list of 13 Yarkovsky detection, and
later work increased this number to 21 (Farnocchia et al. 2013). The most
recent census is from Chesley et al. (2016), which identified 42 NEAs with
valid Yarkovsky detection. Both Farnocchia et al. (2013) and Chesley et al.
(2016) flag spurious cases based on whether the detected drift is compatible
with the physical properties of the corresponding object and the Yarkovsky
mechanism. Since the number of significant Yarkovsky detections in the
NEA population is steadily increasing, we decided to update the list.

3.2 Method

3.2.1 Force model

Usually, there is not enough information on the physical model of an aster-
oid to directly compute the Yarkovsky acceleration through a thermophysical
model. Instead, evidence of the Yarkovsky-related drift may be detectable
from the observational dataset via orbit determination. Indeed, a gravity-
only model may not provide a satisfactory fit to the available data. A
Yarkovsky detection is more likely when a very accurate astrometric dataset
is available, especially in case of radar measurements at multiple appari-
tions or when the observational arc is long, thus allowing the orbital drift
to become detectable. In such cases, a force model that also includes the
Yarkovsky acceleration could result in a better fit to the observations.

We modelled the Yarkovsky perturbation with a formulation that de-
pends on a single dynamical parameter, to be determined in the orbital fit
together with the orbital elements. Since the secular perturbation caused
by the Yarkovsky effect is a semimajor axis drift, we used a transverse ac-
celeration

at = A2g(r)t̂ (3.1)

as in Marsden et al. (1973) and Farnocchia et al. (2013). In equation (3.1)
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A2 is a free parameter and g(r) is a suitable function of the heliocentric
distance of the asteroid. In particular we assume a power law

g(r) =
(r0

r

)d
,

where r0 = 1 au is used as normalization factor. The exponent d depends
on the asteroid and is related to the asteroid’s thermophysical properties.
Farnocchia et al. (2013) show that the value of d is always between 0.5 and
3.5. They used d = 2 for all asteroids because no thermophysical data are
available. In our analysis we adopted the same values for d, apart from
(101955) Bennu for which the value d = 2.25 is assumed (Chesley et al.
2014).

Typical values of the Yarkovsky acceleration for a sub-kilometre NEA are
10−15–10−13 au/d2. As a consequence, to reliably estimate the Yarkovsky
effect, the right-hand side of the equations of motion has to include all
the accelerations down to the same order of magnitude. Our force model
includes the gravitational accelerations of the Sun, the eight planets, and the
Moon based on JPL’s planetary ephemerides DE431 (Folkner et al. 2014).
To ensure a more complete force model, we also include the contributions
coming from 16 massive main belt bodies and Pluto. All the gravitational
masses we used are listed in Table 3.1. Since we compare our results with
the ones obtained by JPL, we point out that the JPL team uses the 16 most
massive main belt asteroids as estimated by Folkner et al. (2014), which
produces a slight difference, both in the list and in the masses.

The relativity model includes the relativistic contribution of the Sun, the
planets and the Moon. In particular, we use the Einstein-Infeld-Hoffman
equations, namely the equations of the approximate dynamics of a system
of point-like masses due to their mutual gravitational interactions, in a first
order post-Newtonian expansion, as described in Moyer (2003), Will (1993),
and Einstein et al. (1938).

3.2.2 Average semimajor axis drift

For a given A2 value and under the assumptions about the dynamical model,
we want to estimate the average semimajor axis drift caused by the trans-
verse acceleration at. This estimate has been introduced in Farnocchia et al.
(2013).

First we can estimate the semimajor axis drift by means of Gauss’ per-
turbative equations:

9a =
2a
√

1− e2

nr
A2g(r)
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Table 3.1. Perturbing bodies included in the dynamical model in addition to the Sun,
the planets and the Moon. They are 16 massive main belt bodies and Pluto. The last
columns shows the references we used for each asteroid mass.

Asteroid Grav. mass Reference
(km3/s2)

(1) Ceres 63.20 Standish et al. (1989)
(2) Pallas 14.30 Standish et al. (1989)
(3) Juno 1.98 Konopliv et al. (2011)
(4) Vesta 17.80 Standish et al. (1989)
(6) Hebe 0.93 Carry (2012)
(7) Iris 0.86 Carry (2012)
(10) Hygiea 5.78 Baer et al. (2011a)
(15) Eunomia 2.10 Carry (2012)
(16) Psyche 1.81 Carry (2012)
(29) Amphitrite 0.86 Carry (2012)
(52) Europa 1.59 Carry (2012)
(65) Cybele 0.91 Carry (2012)
(87) Sylvia 0.99 Carry (2012)
(88) Thisbe 1.02 Carry (2012)
(511) Davida 2.26 Carry (2012)
(704) Interamnia 2.19 Carry (2012)
(134340) Pluto 977.00 Folkner et al. (2014)

where a is the semimajor axis, e is the eccentricity and n is the proper
motion. By averaging we obtain

9a =
a
√

1− e2A2

π

∫ T

0

g(r)

r
dt =

A2

πna

∫ 2π

0
rg(r)df

where T is the orbital period and f is the true anomaly. In case of our
assumption g(r) =

(
r0
r

)d the semimajor axis drift is

9a =
A2(1− e2)

πn

(
r0

p

)d ∫ 2π

0
(1 + e cos f)d−1df.

By Taylor expansion, we have∫ 2π

0
(1 + e cos f)d−1df =

∞∑
k=0

(
d− 1

k

)
ekIk,

where

Ik –
∫ 2π

0
cosk fdf.
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The integral Ik can be computed by a recursive relation. First, I0 = 2π and
I1 = 0. For k ≥ 2 we can integrate by parts obtaining

Ik = (sin f · cosk−1 f)
∣∣∣2π
0

+ (k − 1)

∫ 2π

0
sin2 f · cosk−2 f df =

= (k − 1)Ik−2 − (k − 1)Ik,

from which it follows that

Ik =
k − 1

k
Ik−2.

Thus I2h+1 = 0 for every h ≥ 0 (the odd powers of the cosine average out),
and

I2h =
2h− 1

2h
I2h−2 =

h∏
`=1

2`− 1

2`
· I0 =

=
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as h→ +∞, and thus the series defining J(e, d) is convergent for any eccen-
tricity 0 < e < 1. Furthermore, for integer d the sum of the series J can be
analytically computed, for instance J(e, 2) = 1 and J(e, 3) = 1 + 1

2e
2.

3.2.3 Statistical treatment of the astrometry

The statistical treatment of the astrometry is key to a reliable orbit determi-
nation. The differential corrections procedure provides the asteroid’s nom-
inal orbit and its uncertainty (Milani et al. 2010, Chap. 5), which strongly
depend upon the observations accuracy and error modelling. For the com-
putations done for this chapter, we used the debiasing and weighting scheme
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provided in Farnocchia et al. (2015b). The JPL team uses the more recent
Vereš et al. (2017) weighting scheme.

The astrometric data usually can contain outliers that can affect the
solution of the orbit determination. To remove erroneous observations from
the fit we apply the outlier rejection procedure described in Carpino et al.
(2003).

Besides our default data treatment, we applied ad hoc modifications for
the following cases:

(152563) 1992 BF. The four 1953 precovery observations of this NEA have
been carefully re-measured in Vokrouhlický et al. (2008). We adopt the
given positions and standard deviations, the latter being 0.5 arcsec in right
ascension and 1 arcsec in declination.

2009 BD. This object is one of the smallest near-Earth asteroids currently
known (Mommert et al. 2014a) and thus solar radiation pressure affects its
orbit. A direct detection of the area-to-mass ratio is contained in Micheli
et al. (2012), which provide high-quality astrometry from Mauna Kea and
replace all the observations from the Tzec Maun Observatory (H10) with
a single position. For these observations we set data weights based on the
uncertainties provided by Micheli et al. (2012) and we include both the
Yarkovsky effect and solar radiation pressure in the orbital fit (see Sec-
tion 3.6).

2011 MD. As well as 2009 BD, this asteroid is very small and is among
those for which we determined both the Yarkovsky effect and solar radiation
pressure. 2011 MD has been observed during the 2011 very close approach
with the Earth. Despite the short arc of three months, a very large number
of optical observations of 2011 MD were collected, precisely 1555. Following
the strategy presented in Mommert et al. (2014b), we relaxed the weights
for the observations collected during the close approach1 and we added the
Spitzer detection (on 2014 February 11), which extends the observation arc
by almost three years.

2015 TC25. Asteroid 2015 TC25 was discovered by the Catalina Sky Survey
in October 2015, just two days before an Earth flyby at 0.3 lunar distances.
It is one of the smallest asteroids ever discovered, about 2 m in diameter
(Reddy et al. 2016), and the 2017 astrometry affords an estimate of solar

1Indeed, timing errors are more relevant for observations performed at small geocentric
distances.
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radiation pressure. We are aware that for 2015 TC25 the JPL team carried
out a specific study (Farnocchia et al. 2017a), which adopted ad hoc weights
based on observer-provided uncertainty estimates. To handle this case, we
used the same data treatment as JPL.

Note that it is desirable to keep the number of “manual” interventions on
the observational data as small as possible. Indeed we are trying to figure
out how to automate the determination of the set of NEAs with significant
and reliable Yarkovsky effect. Anyway, in some cases a manual intervention
is needed to properly handle observational issues, e.g., too many close ob-
servations taken during a very close approach and affected by timing errors
or remeasurement of old observations.

3.2.4 Starting sample of NEAs

As first sample of asteroids, we started selecting those objects in NEODyS2

having a formal uncertainty on the semimajor axis σ(a) < 3 · 10−9 au. The
choice of the threshold for σ(a) comes from an order of magnitude estimate:
for an asteroid with diameter 1 km the Yarkovsky drift is about 3·10−10 au/y,
thus it causes a variation of 3 ·10−9 au in ten years. The value of σ(a) has to
be the one computed at the mean epoch of the observations, since it is the
best choice for the orbital fit quality. Moreover, this uncertainty threshold
corresponds to a gravity-only fit: after the Yarkovsky coefficient is estimated
the uncertainty of the semimajor axis sharply increases because of the strong
correlation between A2 and the semimajor axis.

The list of asteroids satisfying this criterion contained 519 objects (as of
February 2018). As a second step, we extracted from the JPL database a
set of 89 asteroids having A2 determined3. Among them, only 16 were not
contained in our first list, thus we added them. Furthermore, we considered
all the reliable detections from Farnocchia et al. (2013) and it turned out
that only 3 asteroids did not belong to any of the previous lists, thus we
added them as well to our sample.

Summarizing, we started with a sample of 519 + 16 + 3 = 538 objects.
For each one of them we performed an orbital fit for the initial conditions
together with the Yarkovsky parameter A2, without any a priori constraint.
For a few of them we also estimated solar radiation pressure. As a result
of the fit, we derived the signal-to-noise ratio SNRA2 of the A2 parameter,
obtaining 101 detections with SNRA2 ≥ 3 and 437 with SNRA2 < 3, most
of which showing a negligible signal-to-noise ratio.

2The NEODyS database is available at http://newton.dm.unipi.it.
3The JPL Small-Body Database is available at http://ssd.jpl.nasa.gov/sbdb.cgi.

http://newton.dm.unipi.it
http://ssd.jpl.nasa.gov/sbdb.cgi


3.2 Method 73

3.2.5 Yarkovsky expected value

By means of orbit determination, we determine a transverse acceleration
directly from the astrometry. However, to claim that the measured ac-
celeration is caused by the Yarkovsky effect we need to make sure that
its magnitude is compatible with the physical properties of the object and
the Yarkovsky mechanism. Therefore, we provide an expected value of the
Yarkovsky-related orbital drift.

In Farnocchia et al. (2013), an expected value for A2 is computed by
exploiting the diameter of the asteroid and scaling from the corresponding
value of (101955) Bennu, the best determined and most reliable Yarkovsky
detection. In this chapter, we make use of the Yarkovsky calibration as in
Spoto et al. (2015):(

da

dt

)
exp

=

(
da

dt

)
B
·
√
aB
(
1− e2

B
)

√
a (1− e2)

DB
D

ρB
ρ

cosϕ

cosϕB

1−A
1−AB

, (3.2)

where D is the diameter of the asteroid, ρ is the density, ϕ is the obliquity
(angle between the spin axis and the normal to the orbit plane), and A is the
Bond albedo. The latter is computed from the geometric albedo pv, using
A = 1

3pv (Muinonen et al. 2010). The symbols with a “B” refer to asteroid
(101955) Bennu, and the values we assume for them are listed in Table 3.2
with their references.

Table 3.2. Values of the physical quantities for the asteroid (101955) Bennu, used in
equation (3.2).

Physical quantity Symbol Value Reference
diameter DB (0.492± 0.020) m Nolan et al. (2013)
density ρB (1.26± 0.07) g/cm3 Chesley et al. (2014)
geometric albedo (pv)B 0.046± 0.005 Emery et al. (2014)

For the diameter D we use the known physical value when available.
When the asteroid’s shape is not so simple to be approximated by an el-
lipsoidal model, we use the dynamically equivalent equal volume ellipsoid
dimensions to compute the equivalent diameter. In particular, this effort
has been done for three asteroids, namely (4179) Toutatis (Hudson et al.
2003), (162421) 2000 ET70 (Naidu et al. 2013), and (275677) 2000 RS11

(Brauer et al. 2015). Otherwise, when no physical information are avail-
able, we estimate the diameter from the absolute magnitude H following
the relation (Pravec et al. 2007)

D = 1329 km · 10−H/5 · (pv)−1/2,
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where the geometric albedo pv is assumed to be pv = 0.154 if unknown.
As shown in equation (3.2), the density is required to estimate the

strength of the Yarkovsky effect for asteroids with small diameters. Carry
(2012) reports a large number of asteroid densities that we use as starting
point. However, in general, density estimates are more reliable and accu-
rate for massive bodies and there is a trend for a decreasing density with
diameter, due to the increasing macroporosity4 resulting from the cascade of
collisions suffered by the body (Carry 2012; Scheeres et al. 2015). We thus
extrapolate the density of small asteroids from the density of large asteroids
belonging to the same taxonomic class by increasing their macroporosity
to that of Bennu (PB = (40 ± 10)%, from Chesley et al. (2014)). Such
macroporosity is typical for (sub-)kilometre-sized asteroids, as illustrated
by (25143) Itokawa, visited by the JAXA Hayabusa mission (Fujiwara et al.
2006). This is a modified version of the approach given in Spoto et al. (2015),
still using Bennu for the scaling since it has the best estimated Yarkovsky ac-
celeration and a comprehensive physical characterization5. Thus the scaled
density is given by

ρs = (1− PB)ρ, (3.3)

where the density scaling factor is 1−PB = 0.60 and ρ is the known density
of the large asteroid. Equation (3.3) follows from the above assumptions
and from the definition of macroporosity. We selected the large asteroids
(4) Vesta, (10) Hygiea, (15) Eunomia, and (216) Kleopatra as representa-
tive of the taxonomic classes V, C, S, Xe respectively. The density of the
representative asteroids and their scaled values are listed in Table 3.3.

Table 3.3. Representative asteroids for some taxonomic classes: number/name, tax-
onomic type, densities as in Carry (2012) with their uncertainties, scaled densities
applying the factor 1− PB.

Asteroid Tax. type ρ ρs
(g/cm3) (g/cm3)

(4) Vesta V 3.58± 0.15 2.15
(10) Hygiea C 2.19± 0.42 1.31
(15) Eunomia S 3.54± 0.20 2.12
(216) Kleopatra Xe 4.27± 0.15 2.56

4It is the fraction of volume occupied by voids.
5Previously Spoto et al. (2015) used the known density of (704) Interamnia, considered

to be a large asteroid with similar composition to Bennu, to estimate porosity of the latter.
Recently the composition of (101955) Bennu has been modelled by Clark et al. (2011),
based on spectral observations, and it has been found to be closer to other large asteroids,
such as (24) Themis and (2) Pallas.
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We used three sources of asteroid physical information: the database of
physical properties of near-Earth asteroids provided by E.A.R.N.6, the JPL
Small-Body Database, and the data provided by the WISE mission, such as
diameters and albedos (Mainzer et al. 2011). It is important to point out
that we have no physical information for the large majority of the objects
discussed in this chapter. For instance, for the 44% of our detections with
SNRA2 > 2.5 we have no physical data, for 62% we have no measured albedo
values, and less than half of our detections can be assigned to a taxonomic
class.

3.2.6 Filtering criterion

We use the Yarkovsky-related expected value as a filtering criterion to un-
derstand whether the estimated orbital drift da/dt is physically consistent
with the Yarkovsky effect. If the estimated da/dt is significantly larger than
the maximum absolute expected value (assuming cosϕ = ±1), the result
is inconsistent with the Yarkovsky mechanism. We compute the indicator
parameter

S =

∣∣∣∣ da/dt

(da/dt)exp

∣∣∣∣ .
Since most times there is very little to no physical information, we need some
margin on the upper threshold for S, which therefore should be larger than
1. We filter out the candidate detections with S > 2. The current maximum
value allowed for S is empirical, but it could be refined. In particular, this
upper threshold can be lowered when better data are available. Improving
the computation of the expected value - thus decreasing the uncertainty
of the indicator parameter S - requires at least a reliable taxonomic type
(for the scaling needed for the density) and better diameters. Values of S
greater than the maximum threshold indicate questionable results. These
spurious detections should be investigated to find possible causes and solu-
tions. In general, either the S value is too high to be compatible with an
acceptable detection or it is barely above the maximum threshold, in such a
way that additional information would clarify the situation and allow us to
decide whether the detection is accepted or refused. For further details see
Section 3.4.

We point out that values S � 1 are permitted. Indeed equation (3.2)
employed asteroid size and bulk density, thus S � 1 means that the orbital
drift is significantly lower than the maximum expected value. Several phe-
nomena can lower the Yarkovsky effect: obliquity ϕ ' 90◦, very large or
very small thermal inertia, larger density than expected, or small rotation

6http://earn.dlr.de/nea/

http://earn.dlr.de/nea/
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angular velocity. For instance, asteroid (85774) 1998 UT18 has a rotation
period of about 34 h, and indeed the indicator S is low (' 0.3, cf. Table 3.4).
The detections of this kind are significant detections of a weak Yarkovsky
drift. A second class of weak Yarkovsky drifts can be defined: they are non-
detections, that is SNRA2 < 3, but the asteroid has physical properties that
would permit a significant detection if the Yarkovsky effect were maximized.
Chesley et al. (2016) refer to these detections as weak detections. Despite
the low SNR, the result of the A2 estimation can provide useful constraints
on the asteroid’s physical properties.

By combining the value of the SNRA2 coming from the orbital fit with
the value of the filtering parameter S, we divided our detections in three
categories.

• We consider accepted the detections satisfying both SNRA2 ≥ 3 and
S ≤ 2.

• The category called marginal significance includes the asteroids for
which 2.5 < SNRA2 < 3 and S ≤ 2, plus (410777) 2009 FD and
(99942) Apophis, both remarkable for their impact monitoring.

• The detections with SNRA2 > 3 and S > 2 are rejected because they
have a too high value for the indicator parameter S, suggesting that the
detected A2 signal is unrealistic or not explicable with the Yarkovsky
effect (see 2003 RM in Chesley et al. (2016), or (4015) Wilson-Harrington
in Section 3.4).

The results only include detections, that is we do not list the asteroids
for which we found no significant Yarkovsky signal from the observational
dataset (85% of the initial sample). Figure 3.1 provides an overall view of
our classification. In particular, we consider the plane (SNRA2 ,S) and we
mark the detections of each class (but the rejected) with a different color:

• the accepted detections are indicated with a green dot;

• the marginal significance detections are represented with a blue dot,
except for (410777) 2009 FD and (99942) Apophis, which are indicated
with a blue asterisk (special cases);

• the rejected detections are indicated with a red cross.

3.3 Accepted and significant results

As explained in Section 3.2.4, we started from the initial sample of NEAs and
we performed an orbital fit including the Yarkovsky parameter A2. Then
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Figure 3.1. Graphical representation of the partition of the detections set into
classes on the plane (SNRA2

,S). We plot the accepted detections (green dots), the
marginally significance detections (blue dots) plus the special cases (410777) 2009 FD
and (99942) Apophis (blue asterisk), and the rejected detections (red crosses).

we applied the filtering procedure, and obtained 86 detections, which are
listed in Table 3.4 and Table 3.5. For each asteroid, we report the value of
the absolute magnitude H, the A2 parameter along with its uncertainty, the
signal-to-noise ratio of A2, the value of the semimajor axis drift da/dt, the
indicator parameter S, and the available physical data such as the geometric
albedo pv, the diameter D, the density ρ, and the taxonomic class. As ex-
plained in Section 3.2.5, when no information on the diameter is available,
we infer one from the absolute magnitude. We mark these cases with an
asterisk (∗) in the diameter column. When the albedo is not directly mea-
sured but the taxonomic class is known, we assigned the albedo according to
Binzel et al. (2002) and marked the albedo value with a dagger (†). When
the albedo is not known we assume pv = 0.154, and mark it with a “d”. Note
that 0.154 is a mean value, which has a low probability of being accurate
because of the bimodality of the albedo distribution of near-Earth aster-
oids. Most asteroids are either significantly brighter or significantly darker.
Thus, when a diameter D is derived from the absolute magnitude and this
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default albedo, its relative uncertainty is larger, and in turn the value of S
(containing the factor 1/D) is uncertain.

Table 3.4. List of Yarkovsky detections with SNRA2
> 5 and with S ≤ 2. The table

is sorted by SNRA2 , in decreasing order. The columns contain the asteroid name, the
absolute magnitude H, the A2 parameter with its uncertainty and signal-to-noise ratio
SNRA2 , the semimajor axis drift da/dt with its uncertainty, the indicator parameter
S, the geometric albedo pv , the diameter D and the taxonomic class. Asteroids with
no available information about the diamater are marked with an asterisk (∗). Aster-
oids with albedo assigned according to Binzel et al. (2002) since no direct estimate is
available are marked with a “d”. Asteroids with no albedo informations are marked
with a dagger (†).

Asteroid H A2 SNRA2
da/dt S pv D Tax.

(10−15 au/d2) (10−4 au/My) (km) class
(101955) Bennu 20.6 −46.20 ± 0.24 194.27 −18.98 ± 0.10 1.0 0.046 0.492 B
(480883) 2001 YE4 20.9 −69.87 ± 0.61 113.66 −50.95 ± 0.45 0.7 0.154d 0.229* -
(2340) Hathor 20.2 −29.94 ± 1.18 25.32 −17.34 ± 0.69 0.6 0.6 0.21 S
(483656) 2005 ES70 23.7 −140.17 ± 5.59 25.08 −80.11 ± 3.19 0.4 0.154d 0.061* -
(152563) 1992 BF 19.7 −24.85 ± 1.17 21.17 −11.96 ± 0.56 0.3 0.287 0.272 Xc
2012 BB124 21.1 71.14 ± 4.05 17.58 29.42 ± 1.67 0.6 0.154d 0.201* -
(85990) 1999 JV6 20.2 −30.62 ± 2.19 13.98 −14.34 ± 1.03 0.6 0.095 0.451 Xk
(437844) 1999 MN 21.2 44.56 ± 4.26 10.46 41.35 ± 3.95 0.7 0.154d 0.195* S
(480808) 1994 XL1 20.8 −45.13 ± 4.35 10.38 −32.37 ± 3.12 0.5 0.154d 0.237* -
2007 TF68 22.7 −184.07 ± 17.91 10.28 −70.90 ± 6.90 0.8 0.154d 0.099* -
(1566) Icarus 16.3 −3.75 ± 0.39 9.73 −4.85 ± 0.50 0.4 0.14 1.44 S
(468468) 2004 KH17 21.9 −65.83 ± 8.08 8.15 −44.11 ± 5.41 0.6 0.072 0.197 C
(138175) 2000 EE104 20.3 −106.50 ± 11.89 8.95 −49.37 ± 5.51 1.4 0.154d 0.297* -
(1862) Apollo 16.1 −3.70 ± 0.42 8.76 −1.89 ± 0.22 0.4 0.26 1.4 Q
(2062) Aten 17.1 −13.18 ± 1.53 8.64 −5.89 ± 0.68 1.4 0.2 1.3 S
(162004) 1991 VE 18.1 26.97 ± 3.35 8.04 21.73 ± 2.70 1.0 0.154d 0.824* -
2006 TU7 21.9 166.67 ± 21.55 7.73 98.51 ± 12.74 1.0 0.154d 0.141* -
2011 PU1 25.5 −375.52 ± 49.66 7.56 −148.60 ± 19.65 0.4 0.154d 0.027* -
(6489) Golevka 19.0 −12.04 ± 1.67 7.21 −5.10 ± 0.71 0.5 0.151 0.53 Q
2011 EP51 25.3 −359.14 ± 51.20 7.01 −185.09 ± 26.39 0.5 0.154d 0.029* -
(33342) 1998 WT24 17.8 −27.87 ± 4.05 6.88 −16.91 ± 2.46 1.4 0.75 0.415 Xe
(3361) Orpheus 19.2 18.27 ± 2.70 6.77 7.88 ± 1.16 0.5 0.357 0.348 Q
(364136) 2006 CJ 20.1 −29.16 ± 4.52 6.46 −34.99 ± 5.42 0.4 0.154d 0.317* -
(499998) 2011 PT 24.0 −234.96 ± 37.16 6.32 −91.30 ± 14.44 0.5 0.154d 0.053* -
(138404) 2000 HA24 19.1 45.05 ± 7.15 6.30 19.95 ± 3.17 1.8 0.154d 0.517* S
2006 CT 22.3 −112.43 ± 18.09 6.22 −48.14 ± 7.74 0.6 0.154d 0.119* -
(3908) Nyx 17.3 25.45 ± 4.20 6.06 9.86 ± 1.63 1.4 0.23 1 V
(363599) 2004 FG11 21.0 −59.90 ± 10.17 5.89 −42.39 ± 7.20 0.8 0.306 0.152 V
1999 UQ 21.7 −110.45 ± 18.77 5.88 −44.85 ± 7.62 0.7 0.154d 0.152* -
2003 YL118 21.6 −172.62 ± 29.42 5.87 −90.31 ± 15.39 1.3 0.154d 0.165* -
(154590) 2003 MA3 21.6 −77.01 ± 13.11 5.87 −37.11 ± 6.32 0.3 0.530 0.086 -
2005 EY169 22.1 −137.02 ± 23.70 5.78 −53.80 ± 9.30 0.8 0.154d 0.128* -
(10302) 1989 ML 19.4 74.98 ± 13.09 5.73 28.76 ± 5.02 0.8 0.51 0.248 -
2000 PN8 22.1 123.75 ± 22.26 5.56 49.28 ± 8.87 0.7 0.154d 0.131* -
(506590) 2005 XB1 21.9 92.68 ± 17.54 5.28 44.88 ± 8.49 0.6 0.154d 0.143* -
(350462) 1998 KG3 22.1 −61.35 ± 11.79 5.21 −24.52 ± 4.71 0.3 0.154d 0.129* -
(216523) 2001 HY7 20.5 58.55 ± 11.23 5.21 31.33 ± 6.01 0.7 0.154d 0.267* -
(363505) 2003 UC20 18.3 −7.48 ± 1.44 5.20 −4.05 ± 0.78 0.7 0.028 1.9 C
(99907) 1989 VA 17.9 16.51 ± 3.19 5.18 12.71 ± 2.46 0.7 0.24 0.55 S
(66400) 1999 LT7 19.3 −43.09 ± 8.33 5.18 −29.44 ± 5.69 0.8 0.182 0.411 -
(377097) 2002 WQ4 19.5 −23.66 ± 4.61 5.13 −10.37 ± 2.02 0.4 0.154d 0.423* -
2000 CK59 24.2 −192.46 ± 37.77 5.10 −74.48 ± 14.62 0.4 0.154d 0.05 * -

Some of the asteroids included in Table 3.4 and Table 3.5 deserves ded-
icated comments.

(1566) Icarus. It is known that the 1968 observations of (1566) Icarus are
affected by large timing errors. A possible solution to this problem is to
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include timing errors in the observations uncertainty possibly even removing
the systematic timing errors. A possible alternative is to properly treat the
correlation between the right ascension and the declination. This operation
will be made easier after the adoption of the new Astrometric Data Exchange
Standard (ADES7). For now, it is possible to adapt the weighting scheme
to underweight the observations during the 1968 close approach: this was
done by the JPL team, not by the Pisa one. By comparing the result of
the two groups, and also with the one in Greenberg et al. (2017a), we can
claim that the detection of the Yarkovsky effect is confirmed, even if there
is a significant difference between the standard deviations (see Section 3.7),
which is explained by the different weighting scheme.

(3908) Nyx. Asteroid (3908) Nyx is classified as V-type, but it has many
properties inconsistent with (4) Vesta. Thus the density scaling is not per-
formed using the density of Vesta as for the other V-type asteroids. Asteroid
(5381) Sekhmet is a V-type with a diameter which is comparable to the one
of Nyx. The density of Sekhmet is (1.30± 0.65) g/cm3 (Carry 2012), com-
patible with the estimate in Farnocchia et al. (2014b), and we assume this
value also for Nyx.

3.4 Rejected results

In this section we consider the significant detections that we rated as spu-
rious, i.e., for which we obtained a Yarkovsky detection greater than one
would reasonably expect from the Yarkovsky effect. Despite the signal-to-
noise ratio is less than 3, we also add (4015) Wilson-Harrington to this
category as a “special” case, as explained below.

Reasons for refusing a detection can be the following:

• Dynamical model problems can occur in few cases, such as (4179) Tou-
tatis and (4015) Wilson-Harrington.

• Sometimes the results are strongly dependent on few observations,
typically old isolated observations, which are separated by a long time
interval from the bulk of the dataset. In these cases we usually reject
the detection, unless the precovery has been carefully remeasured, as
for (152563) 1992 BF.

• Solutions with Yarkovsky affected by observational data of question-
able reliability.

7http://github.com/IAU-ADES/ADES-Master.

http://github.com/IAU-ADES/ADES-Master
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The list of all the rejected detections contains 15 cases, see Table 3.6. Below
we provide dedicated comments for each rejected detection.

(4179) Toutatis Even though this asteroid shows a very significant Yarkovsky
effect detection, we have to point out that Toutatis is especially large (see
Table 3.4, diameter from Hudson et al. (2003)), thus non-gravitational per-
turbations are comparatively small with respect to gravitational ones. A
test we performed with a larger number (343) of perturbing asteroid shows
that the estimated A2 value depends upon the list of perturbers included
and their uncertain masses. Moreover, light curve investigations showed a
non-principal axis rotation, as presented in Mueller et al. (2002) and Spencer
et al. (1995). For all these reasons we cannot rely on the current estimate
of the Yarkovsky drift of Toutatis.

(4015) Wilson-Harrington. This asteroid was initially discovered in 1949 as
a comet at the Palomar Sky Survey. It was named 107P/Wilson-Harrington,
but then it was lost. Thirty years later the asteroid 1979 VA was discov-
ered and, after the 1988 apparition, it was numbered as (4015) 1979 VA. On
August 13, 1992, the IAU circular 5585 (Bowell et al. 1992) reported that
the asteroid (4015) 1979 VA and the comet 107P/Wilson-Harrington were
indeed the same object. Furthermore, no cometary activity was noted dur-
ing the well-observed 1979-80 apparition, confirming that it is actually an
extinct comet. The detection of the Yarkovsky parameter is indeed signifi-
cant, but the S value indicates a value of the non-gravitational acceleration
that is too large than the one expected from the Yarkovsky effect. Since the
observed arc contains the time span of cometary activity, the most likely
interpretation is that the large detected transverse acceleration is caused by
the out-gassing rather than the Yarkovsky effect. Furthermore, a dynamical
model assuming a constant value for A2, as it is the one we employed, is not
enough representative of the real orbital dynamics, given that the cometary
activity has ceased. Thus in this case we consider that a non-gravitational
effect has been detected, but not Yarkovsky.

In some cases, a spurious detections is due to poor optical astrometry,
often affecting isolated old observations. In this case we rejected the de-
tection, and a remeasurement of these old observations would be desirable
to clarify the situation: the Yarkovsky signal could significantly increase as
well as disappear. This is the case for the asteroids listed below.

(260141) 2004 QT24. The detected signal is strongly dependent on four
observations in 1993 and 1998 from Siding Spring Observatory DSS.
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(350751) 2002 AW. This asteroid has two isolated observations in 1991
from Palomar Mountain-DSS.

(39565) 1992 SL. This asteroid has one isolated observation in 1950 from
Palomar Mountain.

(4486) Mithra. This asteroid has a signal which is strongly dependent on a
single isolated observation in 1974 from Crimea-Nauchnij (MPC code 095).

(474158) 1999 FA. This object has one isolated observation in 1978, from
Siding Spring Observatory. In agreement with Farnocchia et al. (2013),
we consider that the 1978 observation would need to be remeasured before
accepting the Yarkovsky detection for (474158) 1999 FA.

(162421) 2000 ET70. This asteroid has two isolated observations in 1977
from European Southern Observatory, La Silla DSS.

There are detections which have to be rated as spurious, because S indi-
cates a Yarkovsky drift which is way larger than expected, despite the fact
that the signal-to-noise ratio of the A2 parameter is ≥ 3. This holds for
2010 KP10, (308635) 2005 YU55, (139359) 2001 ME1, (142561) 2002 TX68,
and (192563) 1998 WZ6. To confirm the reliability of our filtering criterion,
we checked each spurious detections. They show problematic astrometry,
which resulted in an incorrect determination of the Yarkovsky effect.

A separate comment holds for (175706) 1996 FG3, since it is a binary
asteroid (Scheirich et al. 2015). The signal found for the Yarkovsky detec-
tion is likely due to the astrometric data treatment, as confirmed by the
fact that it disappears when the weighting scheme proposed in Vereš et al.
(2017) is applied. Once we have a Yarkovsky detection for this object it will
be possible to compare with the Yarkovsky theory for binary asteroids as
described by Vokrouhlický et al. (2005).

A remarkable case is (433) Eros. This asteroid shows a significant value
for the Yarkovsky effect, but a very high value for the indicator parameter.
Moreover, the obliquity of Eros is known to be ' 89◦ (Yeomans et al. 2000),
therefore we would expect a value for S much less than 1. Thus this detection
is spurious, likely caused by historical data dating back to 1893 for which it
is challenging to come up with a reliable statistical treatment.
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3.5 Marginal significance

We now consider the marginal significance class, containing the detections
for which 2.5 < SNRA2 < 3 and S ≤ 2. These detections are physically
meaningful since they satisfy the filtering on S, but the signal to noise for
the A2 parameter as determined from the observations is not enough for a
reliable detection. In addition, as mentioned before, we include two special
cases in this category, namely (410777) 2009 FD and (99942) Apophis. These
two objects show acceptable values of the indicator S but the signal-to-noise
ratio of the A2 parameter is very low (cf. Table 3.7). Nevertheless, we
decided to keep them because the Yarkovsky drift plays a fundamental role
for its impact predictions (see the introduction). In this way we grouped 24
detections in this class, which are listed in Table 3.7.

(99942) Apophis. Similarly to Toutatis, also Apophis has a complex ro-
tation, as shown in Vokrouhlický et al. (2015b). However, the Yarkovsky
effect is not significantly weakened by the tumbling state. Vokrouhlický et
al. (2015b) used the available rotation state, shape, size and thermophysi-
cal model of Apophis to predict the Yarkovsky semimajor axis drift. The
drift obtained by fitting the astrometric data is compatible with the model
prediction. We obtained da/dt = (−24.50 ± 13.58) · 10−4 au/Myr for the
fitted value, which is completely consistent with Vokrouhlický et al. (2015b).
There is no question that the Yarkovsky effect has to be taken into account
for Apophis to predict future motion, especially for impact hazard assess-
ment (Chesley 2006; Giorgini et al. 2008; Farnocchia et al. 2013).

(410777) 2009 FD. The Yarkovsky effect found is below the significance
level, and nevertheless it has to be taken into account for long-term impact
monitoring purposes (Spoto et al. 2014).

Maintaining a list of marginal significance detections is useful because they
are candidates for future detections as observational data improves and in-
creases.

3.6 Direct radiation pressure detection

Solar radiation pressure is a more complicated perturbation to detect. So
far, solar radiation pressure has only been detected for very small objects
(H > 27) that experienced Earth encounters. Thus we started selecting the
smallest asteroids of the initial sample (more precisely, those with H > 24)
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since the effect becomes larger for smaller size objects, and we tried to detect
solar radiation pressure (SRP) along with the Yarkovsky parameter.

The acceleration caused by solar radiation pressure is radial and can be
modelled with a single parameter A1,

ar = A1g(r)r̂.

In this equation A1 is a free parameter, and g(r) = 1/r2, where r is the
heliocentric distance. Physically, the value of A1 depends mostly on the the
area-to-mass ratio A/M . The relation between them is the following

A1 =
Φ@

c
· CR · A/M,

where c is the speed of light, Φ@ is the solar radiation energy flux at 1 au,
whose value is Φ@ ' 1.361 kW/m2, and CR is a coefficient (of the order of
1) depending upon shape and optical properties of the surface.

The starting sample of asteroids for which we attempted an 8-dimensional
fit contained 10 objects. We found four accepted detections, i.e., SNRA1 ≥ 3,
which are listed in Table 3.8. Notice that for three asteroids of this category,
namely 2011 MD, 2012 LA, and 2015 TC25, the Yarkovsky detection is not
significant and thus the S value, though above the threshold in one case,
does not provide any information. Concerning the area-to-mass ratio we
would compare the value of A/M with an expected value, as we do with the
secular semimajor axis drift da/dt, but this is not possible for now since the
diameter is very uncertain and the other physical properties are currently
unknown. Other fitted values of the area-to-mass ratio has already been
determined for 2009 BD (Micheli et al. 2012), 2012 LA (Micheli et al. 2013)
and 2011 MD (Micheli et al. 2014), though without including the Yarkovsky
effect in the dynamical model. Asteroid 2006 RH120 is listed separately from
the others, since we consider it spurious, as we explain in what follows.

2006 RH120. This strange detection has already been discussed in Chesley
et al. (2016). Our results are very compatible with those of that chapter, and
we agree with the motivations provided to reject this detection. The most
likely explanation for the high transverse acceleration can be the presence of
some non-conservative force, e.g., mass-shedding, outgassing or micromete-
orite flux, that can become as relevant as the Yarkovsky effect for objects of
this size. The area-to-mass ratio, which results in a significant detection, is
not compatible with the hypothesis that 2006 RH120 is an artificial object.
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3.7 Comparison with JPL results

As we already mentioned, the JPL database is regularly updated with the
asteroids for which the orbital fit shows evidence of the Yarkovsky effect.
The same is done for solar radiation pressure when appropriate. The results
produced by two independent software sets are expected to be different, but
compatible. In order to compare them we compute the relative errors

εr(A2) –
|A2 −Ajpl

2 |
σA2

and εjplr (A2) –
|A2 −Ajpl

2 |
σA2,jpl

,

where the superscript “jpl” refers to the JPL solution. To quantify the
difference between the results presented in this chapter and the JPL ones,
we use the quantity

χA2 –
|A2 −Ajpl

2 |√
σ2
A2

+ σ2
A2,jpl

from Milani et al. (2010, Sec. 7.2). We consider compatible two solutions
for which χA2 ≤ 1.

Starting from the list of our accepted detections, we compared the re-
sults every time an asteroid is included in the JPL database of Yarkovsky
effect detections. The results of the comparison are contained in Table 3.9
and 3.10. Just for five asteroids in this list both the relative errors are greater
than 1, even though never above 2.5. Using the metric given by χA2 , we
identify just 3 asteroids (marked with a star in Table 3.9 and 3.10) whose
detections are not fully compatible with respect to our criteria. Anyway, a
χA2 moderately above 1 for 3 cases out of 92 being compared shows a strong
agreement between our results and the JPL’s ones.

Note that this result is not a null test, that is the expected value of the
difference in the estimated values of A2 is not zero. This because the two
computations have used two different astrometric error models, Farnocchia
et al. (2015b) at NEODyS and Vereš et al. (2017) at JPL. The comparative
results described in the last three columns indicate an exceptionally good
agreement. This agreement may be interpreted as a validation of the proce-
dures used both at NEODyS and at JPL, both to compute the Yarkovsky
effect constants and to select the cases in which the results are reliable.

The comparison was also performed for the shorter list of objects for
which we have both A2 and A1, that is both Yarkovsky effect and direct ra-
diation pressure were included in the dynamical model. Table 3.11 contains
the signal-to-noise ratios for both parameters in both solutions, and all the
metrics for the discrepancies. Apart from the results for 2006 RH120, which
are rated as spurious, the accepted results are fully consistent.
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3.8 Impact monitoring with non-gravitational pa-
rameters

A force model including non-gravitational forces is sometimes needed to
make reliable impact predictions, especially if we want to extend the hazard
analysis time span to longer intervals with respect to one century (the de-
fault time span adopted by the current impact monitoring systems). More
precisely, the non-gravitational model plays a fundamental role also in the
LOV computation and propagation (Milani et al. 2005a; Milani et al. 2005b;
Milani et al. 2000). If an asteroid with a very well constrained orbit ex-
periences a very deep close approach, the post-encounter situation is equal
to the one of a poorly determined orbit, with the difference that the large
uncertainty of the asteroid state is due to the divergence of nearby orbits
caused by the encounter, and not to the poor constraints of the initial con-
ditions. In this case, the initial confidence region is very small, thus the
use of the linear approximation of the LOV is allowed. In case such an
encounter occurs the linear LOV direction is derived by analysing that en-
counter and mapping back the corresponding LOV trace on the target plane
(TP) (Valsecchi et al. 2003) to the space of initial conditions. This method
has been used in Spoto et al. (2014) to properly assess the impact risk of
(410777) 2009 FD, exploiting its 2185 scattering encounter with the Earth.
The same formalism can be used even when we are not in the presence of a
scattering encounter, but the close encounter is so deep that the LOV will
turn out to be quite stretched at the next encounter, as in the cases analysed
below.

So far, just four asteroids required such special treatment for a proper
impact risk assessment, namely (101955) Bennu, (99942) Apophis, (29075)
1950 DA, and (410777) 2009 FD, but this list is expected to grow as a conse-
quence of the work presented in this chapter. Below we show two examples
of asteroids for which we found virtual impactors using a non-gravitational
model and that have no possible impacts with a purely gravitational model.
We are aware that such a work could be done on many asteroids with ac-
cepted Yarkovsky detections, but this is beyond the scope of this chapter.

2001 BB16. Currently, this asteroid has a low MOID value, ' 0.0043 au,
but no chance of impacting the Earth in the next century. 2001 BB16 has
a deep close approach with the Earth in 2082, which causes an increase of
the stretching of two orders of magnitude with respect to the next 2086
encounter, whereas the stretching value remains essentially constant until
the 2082 close approach. We used this close approach to derive the LOV
direction and we performed the impact monitoring through 2200 employing
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a non-gravitational model including the Yarkovsky effect. The results are
shown in Table 3.12. In particular we found two VIs at the very end of the
22nd century, which we would not find with a gravity-only model.

2011 MD. This is a very small asteroid, about 6 m in diameter, as deter-
mined in Mommert et al. (2014b). In this case as well, the MOID value
is very low, ' 0.00036 au and it has no virtual impactor in the next cen-
tury. In 2049, this asteroid will experience two very close approaches with
the Earth, causing an increase of two orders of magnitude in the stretching
between these encounters and the following one in 2067. We used the first
2049 close approach (the deepest of the two) to compute the LOV direction
in the space of initial conditions. We thus performed the impact monitoring
using a dynamical model including both the Yarkovsky effect and solar radi-
ation pressure. The results are shown in Table 3.13. When we only include
solar radiation pressure, the orbit uncertainty shrinks and thus the number
of VIs is much lower than before (see Table 3.14). Both Table 3.13 and
Table 3.14 list the virtual impactors with IP ≥ 10−7, since this threshold is
the completeness limit used for the LOV sampling (Del Vigna et al. 2019).
It is worth noting that this asteroid is so small that it would not reach the
ground in case of a real impact, because it would be burnt in the atmosphere.
Therefore this case is not studied for practical purposes of planetary defense,
but rather to show that, in some cases, a non-gravitational model is needed
to make reliable impact predictions and also that different models of non-
gravitational perturbations can give very different results.

3.9 Conclusions and future work

In this chapter we significantly increased the knowledge of non-gravitational
perturbations on near-Earth asteroids, based on actual measurements, rather
than on modelling. The number of significant and reliable Yarkovsky detec-
tions in the NEA catalogue is expected to grow continuously. In fact, the
data volume of future surveys, the increased astrometric accuracy for op-
tical observations, more accurate star catalogue debiasing techniques, and
expanded efforts in radar astrometry provide ever better constraints to mea-
sure this small effect. We identified 86 near-Earth asteroids with significant
and reliable Yarkovsky detection, thus doubling the list provided in Chesley
et al. (2016). For few exceedingly small asteroids, we attempted to directly
detect solar radiation pressure together with the Yarkovsky-related acceler-
ation. For such cases, solar radiation pressure is needed to obtain a more
satisfactory orbital fit.
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There are several research centres handling the computation of asteroid
orbits as an industrial production, like recomputing either all the orbits of
more than 500, 000 numbered asteroids every time a change in the error
model occurs, or a large portion of them just to take into account new ob-
servations and new asteroid discoveries. There are important scientific goals
such as asteroid families and impact monitoring that can only be achieved
by maintaining and constantly updating such large lists of orbits.

We dedicated a significant effort in clarifying a number of marginal
and/or spurious cases, not only to recover a few dubious cases but also
to refine the methodology and therefore be ready for the future increase
of significant detections. Indeed, the problem to be faced in the near fu-
ture is not another increase by a factor two, rather an increase by orders of
magnitude. The second Gaia data release (April 2018) will contain about
1.7 billion of sources brighter than magnitude 21 and ' 14000 asteroids
with astrometry reaching the sub-milliarcsec accuracy in an optimal range
of magnitude G ' 12-17 (Gaia Collaboration: Brown et al. 2018; Gaia
Collaboration: Spoto et al. 2018). The stellar catalogue produced by Gaia
will represent the starting point for a new debiasing and weighting scheme.
Moreover, the combination of Gaia asteroid observations with the already
available ones will produce a sharp increase in the number of objects for
which the Yarkovsky effect will be detectable. Thus the challenge in works
like this is not to establish a new record list of Yarkovsky and/or radiation
pressure detections, but rather to develop an automated calculation of orbits
with estimated non-gravitational parameters.

The computations of orbits with non-gravitational effects is still very far
from being an automated process. To avoid spurious detections, we used the
most recent error models for the observations and a filtering criterion, based
on an estimate of the Yarkovsky effect based upon a physical model of the
asteroid. Unfortunately, both of these tools are still incomplete. The error
models suffer from the continued unavailability of metadata, such as the
signal-to-noise of individual observations, with the result that observations
with different quality are bundled together and the statistical analysis of
the residuals does not yet allow a correct derivation of uncertainty of the
measurement error. The physical models of asteroids, needed to estimate the
expected Yarkovsky effect, are very rough approximations when the main
physical data are not available, as it is the case for the majority of the
asteroids in our tables. Moreover, such small perturbations can be sensitive
to old isolated, and possibly bad astrometric positions.

In conclusion, we made a step in the right direction by developing and
testing the use of different error models, and by using the difference in the
results as an estimate of the sensitivity of the results on the error model. We
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developed and tested the use of a filter for spurious cases, which is based on
an estimate of the expected Yarkovsky effect, which is roughly the same as
the Yarkovsky calibration used to compute the age of asteroid families Milani
et al. (2014) and Spoto et al. (2015). Both tools improved our capability of
obtaining a list of reliable Yarkovsky detections, as well as a much shorter
list of radiation pressure detections for natural bodies.
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Table 3.5. List of Yarkovsky detections with 3 ≤ SNRA2
< 5 and with S ≤ 2. The

table is sorted by SNRA2
, in decreasing order. Columns and symbols are the same as

in Table 3.4.

Asteroid H A2 SNRA2
da/dt S pv D Tax.

(10−15 au/d2) (10−4 au/My) (km) class
(29075) 1950 DA 17.1 −6.03 ± 1.25 4.83 −2.65 ± 0.55 0.5 0.07 2 -
(162117) 1998 SD15 19.1 −15.55 ± 3.28 4.74 −7.76 ± 1.64 0.6 0.154d 0.51 * S
2001 BB16 23.0 345.54 ± 73.84 4.68 163.59 ± 34.96 1.3 0.154d 0.086* -
(138852) 2000 WN10 20.1 36.04 ± 7.80 4.62 16.80 ± 3.64 0.5 0.154d 0.316* -
(455176) 1999 VF22 20.7 −69.25 ± 15.23 4.55 −56.46 ± 12.41 0.8 0.154d 0.248* -
(399308) 1993 GD 20.6 102.49 ± 22.73 4.51 43.94 ± 9.75 0.8 0.3 0.18 -
(7336) Saunders 18.8 39.34 ± 8.82 4.46 14.29 ± 3.20 1.7 0.18 † 0.553* S
(1685) Toro 14.3 −3.76 ± 0.84 4.45 −1.68 ± 0.38 1.1 0.26 3.75 S
(4034) Vishnu 18.3 −66.24 ± 15.48 4.28 −34.03 ± 7.95 1.2 0.52 0.42 -
(85774) 1998 UT18 19.1 −6.64 ± 1.55 4.27 −2.67 ± 0.62 0.3 0.042 0.939 C
(310442) 2000 CH59 19.8 52.16 ± 12.25 4.26 29.04 ± 6.82 0.8 0.154d 0.366* -
(2100) Ra-Shalom 16.2 −4.65 ± 1.10 4.22 −2.67 ± 0.63 0.5 0.14 2.24 C
(326354) 2000 SJ344 22.8 −158.81 ± 37.77 4.20 −65.15 ± 15.49 0.6 0.154d 0.093* -
(481442) 2006 WO3 21.6 −62.26 ± 15.00 4.15 −36.97 ± 8.90 0.4 0.154d 0.164* -
(306383) 1993 VD 21.4 −29.85 ± 7.32 4.08 −19.46 ± 4.77 0.2 0.154d 0.174* -
(441987) 2010 NY65 21.5 −37.87 ± 9.28 4.08 −18.65 ± 4.57 0.4 0.071 0.228 C
2008 CE119 25.6 −143.47 ± 36.04 3.98 −57.16 ± 14.36 0.2 0.154d 0.026* -
(85953) 1999 FK21 18.1 −9.85 ± 2.49 3.95 −9.63 ± 2.44 0.5 0.32 0.59 S
(348306) 2005 AY28 21.6 −91.12 ± 23.12 3.94 −61.39 ± 15.58 0.7 0.154d 0.166* -
(65679) 1989 UQ 19.4 −37.59 ± 9.74 3.86 −17.95 ± 4.65 1.6 0.033 0.918 C
1995 CR 21.7 −85.94 ± 22.44 3.83 −155.89 ± 40.71 1.0 0.18 † 0.143* S
(232691) 2004 AR1 19.8 −116.25 ± 30.33 3.83 −50.45 ± 13.16 1.9 0.154d 0.369* -
(265482) 2005 EE 21.2 93.97 ± 24.62 3.82 42.07 ± 11.02 0.8 0.154d 0.197* -
(136818) Selqet 19.0 24.44 ± 6.42 3.81 12.18 ± 3.20 0.6 0.15 † 0.548* X
(425755) 2011 CP4 21.1 52.62 ± 13.99 3.76 96.46 ± 25.65 0.5 0.154d 0.201* -
(192559) 1998 VO 20.4 −33.01 ± 8.81 3.75 −14.25 ± 3.80 0.6 0.28 0.216 S
(163023) 2001 XU1 19.2 47.27 ± 12.70 3.72 32.04 ± 8.61 1.0 0.154d 0.479* -
(5604) 1992 FE 17.2 −24.03 ± 6.61 3.64 −12.68 ± 3.49 1.2 0.48 0.55 V
(397326) 2006 TC1 19.0 33.65 ± 9.23 3.65 12.68 ± 3.48 0.8 0.154d 0.54 * -
(208023) 1999 AQ10 20.4 −44.41 ± 12.21 3.64 −20.66 ± 5.68 1.0 0.154d 0.281* S
(437841) 1998 HD14 20.9 −87.22 ± 24.35 3.58 −41.83 ± 11.68 1.4 0.18 † 0.205* Q
(413260) 2003 TL4 19.5 −36.09 ± 10.21 3.53 −20.36 ± 5.76 0.6 0.22 0.38 -
(4581) Asclepius 20.7 −40.76 ± 11.76 3.47 −19.62 ± 5.66 0.4 0.154d 0.241* -
(136582) 1992 BA 19.9 −54.38 ± 16.17 3.36 −20.03 ± 5.96 0.9 0.154d 0.363* -
(467351) 2003 KO2 20.4 97.34 ± 28.27 3.44 65.59 ± 19.05 1.2 0.154d 0.277* -
(7341) 1991 VK 16.8 −6.04 ± 1.84 3.29 −2.54 ± 0.77 0.6 0.18 † 1.344* S
(256004) 2006 UP 23.0 −174.21 ± 53.10 3.28 −64.61 ± 19.69 0.6 0.154d 0.084* -
(450300) 2004 QD14 20.6 −116.65 ± 35.73 3.26 −57.61 ± 17.65 1.3 0.154d 0.263* -
(477719) 2010 SG15 25.2 −237.31 ± 74.49 3.19 −90.57 ± 28.43 0.3 0.154d 0.031* -
(37655) Illapa 17.8 −13.41 ± 4.26 3.15 −10.81 ± 3.43 0.6 0.154d 0.938* -
(267759) 2003 MC7 18.7 −29.24 ± 9.36 3.12 −10.97 ± 3.51 0.8 0.154d 0.611* -
(310842) 2003 AK18 19.7 −33.50 ± 10.94 3.06 −17.83 ± 5.82 0.6 0.154d 0.385* -
(162783) 2000 YJ11 20.6 −127.26 ± 42.13 3.02 −49.85 ± 16.50 1.4 0.154d 0.257* -
(152671) 1998 HL3 20.1 −55.64 ± 18.40 3.02 −25.68 ± 8.49 0.7 0.2 0.298 -
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Table 3.6. List of rejected Yarkovsky detections. Each group of asteroids in the table
is sorted by SNRA2

, in decreasing order. The columns are the same as in Table 3.4,
but the one showing da/dt.

Asteroid H A2 SNRA2
S pv D Tax.

(10−15 au/d2) (km) class
(4179) Toutatis 15.2 −5.95 ± 0.65 9.20 2.1 0.13 4.45 S
(4015) Wilson-Harrington 16.0 −16.48 ± 7.16 2.30 2.9 0.046 3.821 C
(260141) 2004 QT24 18.3 530.90 ± 53.46 9.93 20.8 0.42 0.454* S
(350751) 2002 AW 20.7 −579.13 ± 116.36 4.98 6.5 0.154d 0.243* B
(39565) 1992 SL 18.4 −100.52 ± 20.41 4.92 3.1 0.154d 0.698* -
(4486) Mithra 15.4 −83.37 ± 18.47 4.51 12.9 0.297 1.849 V
(474158) 1999 FA 20.6 −93.01 ± 22.25 4.18 1.7 0.18 † 0.233* S
(162421) 2000 ET70 18.0 −33.73 ± 10.80 3.12 3.4 0.15 † 2.26 -
(308635) 2005 YU55 21.6 −317.23 ± 60.43 5.25 4.5 0.065 0.306 C
(139359) 2001 ME1 16.6 −307.68 ± 60.74 5.07 45.0 0.04 3.15 * C
(433) Eros 10.8 −1.96 ± 0.40 4.96 2.7 0.25 16.84 S
(175706) 1996 FG3 18.3 −55.77 ± 12.90 4.32 3.1 0.072 1.196 C
2010 KP10 23.4 2981.28 ± 915.15 3.26 11.4 0.101 0.087 -
(142561) 2002 TX68 18.1 −466.98 ± 153.85 3.04 35.3 0.154d 0.801* Xe
(192563) 1998 WZ6 17.3 −54.76 ± 18.17 3.01 3.7 0.30 0.8 V

Table 3.7. List of marginal significance detections, which means 2.5 < SNRA2
< 3

and S ≤ 2. The table is sorted by SNRA2
, in decreasing order (apart from the two

special cases at the top). Columns and symbols are the same as in Table 3.4.

Asteroid H A2 SNRA2
da/dt S pv D Tax.

(10−15 au/d2) (10−4 au/My) (km) class
(99942) Apophis 18.9 −53.39 ± 29.60 1.80 −24.50 ± 13.58 1.6 0.30 0.375 S
(410777) 2009 FD 22.1 21.49 ± 47.40 0.45 11.18 ± 24.66 0.4 0.01 0.472 -
(162080) 1998 DG16 19.8 −37.93 ± 12.84 2.95 −19.51 ± 6.61 1.4 0.035 0.777 C
(85770) 1998 UP1 20.4 −34.77 ± 11.84 2.94 −16.77 ± 5.71 0.8 0.154d 0.282* S
(162142) 1998 VR 18.7 17.59 ± 5.98 2.94 8.88 ± 3.02 0.8 0.18 † 0.6 S
2002 LY1 22.4 −166.14 ± 57.73 2.88 −84.31 ± 29.30 0.8 0.154d 0.114* -
(474163) 1999 SO5 20.9 −79.89 ± 27.78 2.88 −32.69 ± 11.37 0.8 0.154d 0.22 * -
(242191) 2003 NZ6 19.0 38.23 ± 13.29 2.88 24.07 ± 8.37 0.6 0.334 0.370 -
(215588) 2003 HF2 19.4 −79.07 ± 27.60 2.87 −58.53 ± 20.43 1.7 0.118 0.488 -
(162181) 1999 LF6 18.2 −22.41 ± 7.86 2.85 −8.70 ± 3.05 1.3 0.175 0.729 S
(164207) 2004 GU9 21.1 −69.93 ± 24.83 2.82 −30.24 ± 10.74 0.5 0.219 0.163 -
2001 QC34 20.1 −73.87 ± 26.33 2.81 −30.61 ± 10.91 1.9 0.154d 0.329* Q
(283457) 2001 MQ3 18.9 −38.45 ± 13.73 2.80 −13.80 ± 4.93 0.9 0.154d 0.56 * -
2007 PB8 21.2 −160.83 ± 58.50 2.75 −90.77 ± 33.01 1.4 0.154d 0.198* -
(230111) 2001 BE10 19.2 −28.81 ± 10.72 2.69 −15.61 ± 5.81 0.9 0.253 0.4 S
1999 SK10 19.7 −45.84 ± 17.24 2.66 −18.21 ± 6.85 1.0 0.346 0.259 S
(338292) 2002 UA31 19.0 −35.78 ± 13.48 2.65 −22.29 ± 8.40 0.8 0.154d 0.538* -
(334412) 2002 EZ2 20.1 −119.39 ± 45.75 2.61 −45.46 ± 17.42 1.1 0.40 0.21 -
(376879) 2001 WW1 22.0 −63.88 ± 24.83 2.57 −25.03 ± 9.73 0.4 0.154d 0.135* -
(416151) 2002 RQ25 20.6 55.10 ± 21.64 2.55 24.49 ± 9.62 0.7 0.154d 0.262* C
(503941) 2003 UV11 19.5 6.66 ± 2.63 2.53 5.62 ± 2.22 0.1 0.376 0.26 Q
(471240) 2011 BT15 21.7 −196.07 ± 77.53 2.53 −80.55 ± 31.85 1.3 0.154d 0.154* -
1994 CJ1 21.5 −138.42 ± 55.12 2.51 −53.87 ± 21.45 1.0 0.154d 0.167* -
(54509) YORP 22.6 −74.61 ± 29.88 2.50 −33.45 ± 13.40 0.6 0.154d 0.1 S
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Table 3.8. List of detections including both the Yarkovsky effect and solar radiation
pressure, that is the set of asteroids for which the parameter A1 was reliably determined
with a signal-to-noise ratio SNRA1 > 3.

Asteroid A2 SNRA2
S A1 SNRA1

A/M D

(10−15 au/d2) (10−15 au/d2) (m2/ton) (m)
2009 BD −1152 ± 82 14.0 0.2 57 663 ± 8674 6.7 0.3 4
2012 LA −4907 ± 12 832 0.4 2.2 81 216 ± 16 312 5.0 0.4 10*
2011 MD −2006 ± 3049 0.7 0.5 75 074 ± 24 396 3.1 0.3 6
2015 TC25 −4433 ± 2754 1.6 1.4 160 079 ± 20 065 8.0 0.7 3*
2006 RH120 −50 469 ± 3787 13.3 9.0 124 099 ± 4747 26.1 0.6 4*

Table 3.9. Comparison between the accepted results of this chapter (SNRA2
≥ 5)

and the JPL ones. The columns contain the asteroid name, the signal-to-noise ratio
of our solution and of the JPL one, the ratio σA2,jpl/σA2

of the A2 uncertainties as
estimated by the two systems, the relative errors computed with our A2 uncertainty
and with the JPL A2 uncertainty respectively, and the χA2

value.

Asteroid SNRA2
SNRjpl

A2
σA2,jpl/σA2

εr(A2) εjplr (A2) χA2
(101955) Bennu 192.50 182.10 1.06 0.23 0.22 0.173
(480883) 2001 YE4 114.54 72.38 1.58 0.29 0.18 0.149
(2340) Hathor 25.37 24.29 1.06 0.29 0.28 0.204
(483656) 2005 ES70 25.08 18.39 1.39 0.40 0.29 0.236
(152563) 1992 BF 21.24 27.49 0.81 1.05 1.30 0.816
2012 BB124 17.57 9.00 1.86 0.83 0.45 0.392
(85990) 1999 JV6 13.98 12.58 1.22 1.37 1.12 0.869
(437844) 1999 MN 10.46 8.42 1.17 0.59 0.50 0.381
(480808) 1994 XL1 10.37 11.81 0.93 0.61 0.66 0.446
2007 TF68 10.28 6.02 1.55 0.95 0.62 0.517
(1566) Icarus 9.62 3.79 2.10 1.64 0.78 0.705
(138175) 2000 EE104 8.96 6.86 1.20 0.72 0.60 0.460
(1862) Apollo 8.81 7.23 1.12 0.71 0.63 0.476
(2062) Aten 8.61 7.34 1.07 0.79 0.74 0.541
(468468) 2004 KH17 8.15 6.55 1.28 0.27 0.21 0.167
(162004) 1991 VE 8.05 6.10 1.14 1.07 0.93 0.704
2006 TU7 7.73 5.58 1.40 0.08 0.06 0.045
2011 PU1 7.56 6.00 1.01 1.52 1.51 1.074 ?
(6489) Golevka 7.21 7.91 0.87 0.32 0.36 0.239
2011 EP51 7.01 6.46 0.98 0.71 0.72 0.505
(33342) 1998 WT24 6.88 5.27 1.22 0.43 0.35 0.273
(3361) Orpheus 6.77 7.10 1.09 0.99 0.91 0.668
(364136) 2006 CJ 6.45 8.26 0.74 0.32 0.44 0.261
(499998) 2011 PT 6.32 7.40 0.81 0.30 0.37 0.236
(138404) 2000 HA24 6.30 2.05 2.82 0.53 0.19 0.177
2006 CT 6.22 5.82 0.99 0.45 0.45 0.319
(3908) Nyx 6.06 4.62 1.29 0.08 0.06 0.047
(363599) 2004 FG11 5.89 3.81 1.56 0.05 0.03 0.027
1999 UQ 5.88 3.39 1.87 0.43 0.23 0.205
2003 YL118 5.87 4.71 1.18 0.32 0.28 0.210
(154590) 2003 MA3 5.87 4.75 1.19 0.25 0.21 0.159
2005 EY169 5.78 4.29 1.22 0.57 0.47 0.360
(10302) 1989 ML 5.73 4.58 1.02 1.06 1.03 0.738
2000 PN8 5.56 5.43 1.07 0.25 0.23 0.172
(506590) 2005 XB1 5.28 5.59 1.09 0.78 0.72 0.531
(216523) 2001 HY7 5.21 4.52 1.09 0.29 0.27 0.198
(350462) 1998 KG3 5.20 5.75 0.89 0.11 0.12 0.079
(363505) 2003 UC20 5.19 2.57 1.22 2.06 1.68 1.302 ?
(99907) 1989 VA 5.18 3.63 1.30 0.45 0.34 0.273
(66400) 1999 LT7 5.17 4.37 1.20 0.06 0.05 0.037
(377097) 2002 WQ4 5.13 3.93 1.32 0.05 0.04 0.029
2000 CK59 5.10 5.76 0.87 0.10 0.11 0.074
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Table 3.10. Comparison between the accepted results of this chapter (SNRA2
< 5)

and the JPL ones. The columns are the same of Table 3.9.

Asteroid SNRA2
SNRjpl

A2
σA2,jpl/σA2

εr(A2) εjplr (A2) χA2
(29075) 1950 DA 4.82 4.17 1.03 0.51 0.49 0.351
(162117) 1998 SD15 4.74 4.35 1.23 0.62 0.51 0.394
2001 BB16 4.68 4.86 1.14 0.86 0.75 0.567
(138852) 2000 WN10 4.62 4.29 1.04 0.17 0.16 0.116
(455176) 1999 VF22 4.55 3.99 1.27 0.51 0.40 0.313
(399308) 1993 GD 4.51 4.45 0.98 0.17 0.17 0.120
(1685) Toro 4.48 4.33 0.85 0.81 0.95 0.618
(7336) Saunders 4.46 2.76 1.22 1.08 0.89 0.686
(4034) Vishnu 4.28 4.31 1.15 0.66 0.57 0.433
(85774) 1998 UT18 4.28 3.44 1.11 0.48 0.44 0.325
(310442) 2000 CH59 4.26 2.60 1.38 0.68 0.50 0.402
(2100) Ra-Shalom 4.23 3.10 1.14 0.69 0.61 0.456
(326354) 2000 SJ344 4.20 6.92 0.65 0.28 0.44 0.237
(481442) 2006 WO3 4.15 3.97 0.94 0.41 0.44 0.300
(441987) 2010 NY65 4.08 3.88 1.03 0.07 0.07 0.047
(306383) 1993 VD 4.08 1.61 1.35 1.91 1.42 1.137 ?
2008 CE119 3.98 3.43 1.57 1.41 0.90 0.756
(85953) 1999 FK21 3.96 4.94 0.89 0.44 0.49 0.327
(348306) 2005 AY28 3.94 4.23 0.75 0.76 1.01 0.606
(65679) 1989 UQ 3.86 3.74 1.07 0.14 0.13 0.097
(232691) 2004 AR1 3.83 2.28 1.08 1.38 1.29 0.942
1995 CR 3.83 2.23 1.42 0.65 0.46 0.374
(265482) 2005 EE 3.82 1.58 1.48 1.46 0.99 0.818
(136818) Selqet 3.81 2.08 1.37 0.96 0.70 0.566
(425755) 2011 CP4 3.76 3.37 1.24 0.40 0.33 0.254
(192559) 1998 VO 3.75 3.77 0.92 0.26 0.29 0.194
(163023) 2001 XU1 3.72 2.94 1.05 0.63 0.60 0.432
(397326) 2006 TC1 3.65 3.45 0.98 0.26 0.27 0.188
(208023) 1999 AQ10 3.64 2.27 1.14 1.05 0.93 0.696
(5604) 1992 FE 3.64 3.46 1.24 0.64 0.52 0.402
(437841) 1998 HD14 3.58 3.26 0.87 0.73 0.84 0.551
(413260) 2003 TL4 3.53 2.85 1.02 0.61 0.60 0.429
(4581) Asclepius 3.47 2.57 1.20 0.39 0.32 0.247
(467351) 2003 KO2 3.44 2.93 1.34 0.49 0.37 0.294
(136582) 1992 BA 3.36 3.43 1.18 0.70 0.59 0.449
(256004) 2006 UP 3.28 3.65 0.95 0.18 0.19 0.133
(7341) 1991 VK 3.28 3.72 1.07 0.68 0.64 0.465
(450300) 2004 QD14 3.26 1.99 2.03 0.78 0.38 0.342
(477719) 2010 SG15 3.19 2.78 1.01 0.39 0.38 0.272
(37655) Illapa 3.15 2.67 1.14 0.10 0.09 0.065
(267759) 2003 MC7 3.12 3.57 0.87 0.01 0.02 0.010
(310842) 2003 AK18 3.06 2.60 1.31 0.35 0.27 0.214
(162783) 2000 YJ11 3.02 3.38 0.94 0.16 0.17 0.114
(152671) 1998 HL3 3.02 3.16 0.98 0.06 0.06 0.042
(85770) 1998 UP1 2.94 3.01 1.42 1.34 0.94 0.771
(474163) 1999 SO5 2.88 3.51 1.02 0.72 0.70 0.501
(283457) 2001 MQ3 2.80 3.91 0.87 0.61 0.70 0.462
(376879) 2001 WW1 2.57 3.07 0.76 0.24 0.31 0.188
(99942) Apophis 1.80 2.54 0.74 0.09 0.12 0.069
(410777) 2009 FD 0.45 0.04 1.22 0.51 0.42 0.321

Table 3.11. Results of the comparison between the estimated values of A2 and A1, as
contained in this chapter and in the JPL database. In particular, the columns contain
the asteroid name, the signal-to-noise ratio of our A2 solution and of the JPL one, the
signal-to-noise ratio of our A1 solution and of the JPL one, the relative error in the
A2 parameter computed with our A2 uncertainty and with the JPL A2 uncertainty
respectively, the relative error in the A1 parameter computed with our A1 uncertainty
and with the JPL A1 uncertainty respectively, the χ-value for A2 and for A1.

Asteroid SNRA2
SNRjpl

A2
SNRA1

SNRjpl
A1

εr(A2) εjplr (A2)εr(A1) εjplr (A1) χA2
χA1

2009 BD 14.0 13.9 6.7 6.3 0.12 0.12 0.44 0.45 0.084 0.315
2012 LA 0.4 0.3 5.0 6.9 0.22 0.37 0.04 0.05 0.189 0.029
2011 MD 0.7 0.3 3.1 3.1 0.32 0.25 0.11 0.10 0.198 0.074
2015 TC25 1.6 1.6 8.0 7.6 0.06 0.05 0.11 0.11 0.039 0.076
2006 RH120 13.3 11.1 26.1 23.4 0.16 0.13 1.62 1.36 0.100 1.043
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Table 3.12. Impact monitoring of asteroid 2001 BB16 with a non-gravitational model
that includes the Yarkovsky effect. Table columns: calendar date (year, month, and
day) for the potential impact for asteroid 2011 MD, approximate σ value of the virtual
impactor location along the LOV, minimum distance (the lateral distance from the
LOV to the centre of the Earth on the TP confidence region), stretching (how much the
confidence region at the epoch has been stretched by the time of impact), probability
of Earth impact (IP ), and Palermo Scale (PS). The width of the TP confidence region
is always few km, thus not reported.

Date σ Distance Stretching IP PS
(RC) (RC)

2195/01/15.525 −3.404 3.17 5.20 · 103 2.91 · 10−7 −6.35

2199/01/15.844 −3.164 2.10 8.36 · 104 5.02 · 10−8 −7.12

Table 3.13. Impact monitoring of asteroid 2011 MD with a non-gravitational model
that includes both the Yarkovsky effect and solar radiation pressure. Columns as in
Table 3.12.

Date σ Distance Stretching IP PS
(RC) (RC)

2083/06/13.856 2.720 6.44 2.86 · 104 3.54 · 10−7 −8.29

2098/06/07.618 0.428 6.38 9.00 · 105 4.33 · 10−7 −8.29

2099/06/08.786 0.370 5.68 3.70 · 105 1.32 · 10−6 −7.81

2102/06/13.699 −0.250 6.40 5.23 · 104 7.61 · 10−6 −7.06

2110/05/28.604 −0.993 5.52 1.48 · 106 2.09 · 10−7 −8.66

2113/06/09.765 0.330 4.09 9.48 · 105 6.90 · 10−7 −8.15

2116/06/08.850 0.258 6.37 2.61 · 106 1.57 · 10−7 −8.81

2116/06/08.870 0.258 6.24 3.78 · 106 1.14 · 10−7 −8.95

2118/06/07.317 0.472 6.12 1.52 · 106 2.65 · 10−7 −8.59

2118/06/10.605 1.496 4.80 3.54 · 105 5.66 · 10−7 −8.26

2119/06/14.086 −0.670 6.55 3.30 · 104 9.22 · 10−6 −7.05

2119/06/14.181 −0.670 1.70 9.79 · 105 6.57 · 10−7 −8.20

2120/06/04.434 0.520 5.51 3.44 · 106 1.69 · 10−7 −8.79

2122/06/11.859 1.223 5.48 1.25 · 106 2.07 · 10−7 −8.72

2123/06/08.803 0.416 4.78 1.28 · 106 4.34 · 10−7 −8.40

2132/06/09.046 0.184 6.30 3.78 · 106 1.13 · 10−7 −9.02

2137/06/11.124 1.218 6.18 2.09 · 106 1.01 · 10−7 −9.08

2139/06/12.675 1.240 5.83 8.80 · 105 2.58 · 10−7 −8.68

2140/06/12.052 1.301 4.52 7.04 · 105 3.98 · 10−7 −8.50

2151/06/12.350 −0.796 6.93 1.66 · 106 1.20 · 10−7 −9.05

2151/06/12.604 −0.732 6.44 2.90 · 106 1.05 · 10−7 −9.11

2151/06/12.780 −0.762 2.96 3.16 · 106 1.76 · 10−7 −8.89

2155/06/11.940 −0.439 6.54 5.27 · 104 5.87 · 10−6 −7.37

2155/06/11.984 −0.436 2.86 2.98 · 105 2.29 · 10−6 −7.78

2155/06/12.054 −0.439 2.92 8.38 · 104 8.04 · 10−6 −7.24

2155/06/12.168 −0.437 7.06 1.96 · 104 1.44 · 10−5 −6.98

2158/06/11.842 −2.091 7.19 2.80 · 105 1.19 · 10−7 −9.08

2182/06/09.849 0.041 4.51 5.95 · 106 1.09 · 10−7 −9.18
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Table 3.14. Impact monitoring of asteroid 2011 MD with a non-gravitational model
including solar radiation pressure only. Columns as in Table 3.12.

Date σ Distance Stretching IP PS
(RC) (RC)

2133/12/05.197 −0.476 0.27 1.98 · 106 3.58 · 10−7 −8.52

2140/11/25.578 −0.352 4.66 5.53 · 106 1.12 · 10−7 −9.05

2147/11/27.042 0.212 4.79 1.17 · 105 5.13 · 10−6 −7.41

2168/05/22.293 0.081 4.70 2.13 · 106 2.87 · 10−7 −8.72

2169/11/26.849 −0.053 5.48 1.92 · 106 2.76 · 10−7 −8.74

2186/11/21.935 −0.633 6.87 1.56 · 106 1.46 · 10−7 −9.06



Chapter 4
Completeness of Impact Monitoring

Some asteroids with an Earth-crossing orbit may impact our planet. A cru-
cial issue is to be able to identify the cases that could have a threatening
Earth close encounter within a century, as soon as new asteroids are discov-
ered or as new observations are added to prior discoveries. The main goal
of impact monitoring is to solicit astrometric follow-up to either confirm or
more likely dismiss the announced risk cases, i.e., asteroids having some
virtual impactors (Milani et al. 2000). This is achieved by communicating
the impact date, the impact probability and the estimated impact energy.

This activity requires an automated system that continually monitors
the Near-Earth Asteroids (NEAs) catalogue. clomon-2 and Sentry1 are
two independent impact monitoring systems that have been operational at
the University of Pisa since 1999 and at JPL since 2002, providing the list of
asteroids with a non-zero probability to impact the Earth within a century
(Milani et al. 2005b). There is a constant comparison between the results of
the two systems and, as required by the International Astronomical Union,
the results are carefully cross-checked before any public announcement of an
impact risk above an agreed level, as measured by the Palermo Scale (Chesley
et al. 2002). There is a probability threshold called generic completeness
limit that the two systems set as a goal. Above this threshold the search for
impact possibility has to be complete, that is every virtual impactor (i.e.,
each connected set of initial conditions leading to a collision with a planet)
with an impact probability greater than the completeness limit has to be
detected. Desirably, the generic completeness levels of the two concurrent
impact monitoring systems need to be as close as possible, in order to have
a common threshold down to which the two systems can be compared.

1http://cneos.jpl.nasa.gov/sentry/
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Since the generic completeness limit is a theoretical quantity, defined un-
der some simplified assumptions, the level of completeness actually reached
by the system has to be measured a posteriori. If the generic completeness
limit in impact probability is somewhat lower than the actual level achieved,
it means that there is a loss of efficiency in the VI search, that is some VI
which could in theory be detected is missed in the scan. Finding possible
causes and trying to decrease the number of missed VIs leads to an improve-
ment of the whole system, filling as much as possible the gap between the two
completeness limits. There are two methods to measure this quantity: the
first is based on an empirical law to model the number of virtual impactors
as a function of the impact probability; the second is a direct comparison
with the results of an other independent system, namely Sentry, since we do
not have a “ground truth”, that is a practical way to generate an absolutely
complete list of all possible VIs above a given impact probability IP . We
analysed the results of the application of our method by exploiting both the
techniques.

4.1 Generic completeness definition

This chapter is focused on the completeness of impact monitoring, that is on
the completeness of the VI search. The completeness limit can be formally
defined as the highest impact probability VI that can escape the detection.
Given the complexity of the problem of impact monitoring, this completeness
cannot be computed and thus we use an approximate definition, which as-
sumes idealized circumstances. The generic completeness limit is the highest
impact probability VI that could possibly escape detection, if the associated
return on the target plane is fully linear (Milani et al. 2005b), that is un-
der the hypothesis of full linearity of the map f introduced in Section 1.5.3.
Under this generic assumption the trace of the VAs on the target plane is
simply a straight line on the TP: if there is a VI, this line intersects the
impact cross section D on the TP in a chord of the circle bounding D.

For a VI to be detectable by the system, at least one LOV orbit has to
cross the target plane. For now, we make the assumption that one point on
the TP is sufficient for the VI detection (see Section 4.3 for a discussion on
this choice). The stretching is a key quantity to estimate the number of LOV
orbits that intersects the target plane of a given encounter: the higher is the
stretching, the greater is the separation between two consecutive points on
the TP. In particular, if the stretching becomes too high, the separation
on the TP could exceed the diameter 2RTP of the TP itself, thus no point
crosses the TP and the virtual impactor is not detected with certainty. As
a consequence, to have at least one point on the TP, the stretching cannot
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exceed a maximum value Smax. Assuming a uniform step-size ∆σ for the
LOV sampling, the condition S ·∆σ ≤ 2RTP must hold, which implies

S ≤ 2RTP
∆σ

— Smax. (4.1)

We now convert the previous inequality into a condition concerning the
impact probability. We can define a probability density function on the
LOV as the restriction of the Gaussian probability density function defined
on the orbital elements space2. This density is

p(σ) –
1√
2π
e−

σ2

2 , (4.2)

where σ is the LOV parameter. Under our assumptions, the impact prob-
ability of the VI is given by integrating p(σ) over the inverse image of the
diametrical chord contained in the LOV projection on the TP. The integra-
tion domain is an interval in the σ-space: assuming that stretching is S, its
length is given by 2bC/S. As a consequence, the following estimation holds:

IP ' 2bC

S
· p(0) ≥ 1√

2π

2bC

Smax
=

∆σ√
2π
· bC

RTP
.

where bC is the radius of the Earth impact cross section on the TP, which
takes into account the gravitational focusing (Valsecchi et al. 2003). Since
the generic completeness limit IP ∗ is the minimum impact probability of a
VI for which condition (4.1) is satisfied, we have

IP ∗ –
∆σ√

2π
· bC

RTP
.

This quantity depends on the amount of gravitational focusing, and can be
higher for asteroids with a low velocity at infinity. To obtain a uniform
threshold, we can use a typical value for bC, e.g., bC = 2RC. This is an
approximation, but we need to chose a fixed value applicable to all asteroids
with VIs, thus we are using a value appropriate for low relative velocity
NEA, taking into account that these have larger probability of having VIs.
In this way we have an approximated value for the generic completeness
limit:

IP ∗ =
∆σ√

2π
· 2RC

RTP
. (4.3)

2The probability density defined on the orbital elements space is the propagation of
the Gaussian density assumed for the residuals, and it is Gaussian with mean x∗ (the
nominal solution) and covariance matrix Γ = Γ(x∗), the covariance matrix of the orbit
determination least squares fit (Milani et al. 2010).
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With the previous simple equation we can provide an estimate of the
completeness reached by clomon-2 while it was operating with a uniform
LOV sampling. As shown in Milani et al. (2005b), we obtain3

IP ∗ ' 4.24 · 10−7,

corresponding to a maximum stretching value of Smax = 3.8 ·106RC. In the
case at least two points on the TP are required for the detection of a VI,
the generic completeness limit IP ∗ would be simply twice as much.

4.2 An optimal method for LOV sampling

Before the switch to the new method presented in this chapter, clomon-2
performed the LOV sampling by means of uniformly spaced points in the
parameter σ, and over the interval |σ| ≤ 3. Since the probability density on
the LOV is the Gaussian defined by (4.2), a uniform step in σ is not optimal
because the probability of each sampling interval is too high around σ = 0,
whereas it becomes too low near the LOV endpoints. This is the reason
to use a step-size that is inversely proportional to the probability density.
The new sampling is such that the probability of the interval among two
consecutive points of the sampling is constant. It means that if {σi}i=1, ..., N

are the sampling nodes, then

P([σi, σi+1]) –

∫ σi+1

σi

p(σ) dσ

is constant, i.e., it does not depend on i. As a consequence, the sample points
will be more dense around the value σ = 0 (nominal solution) whereas they
become more sparse moving towards the tips. Furthermore, to avoid too long
intervals at LOV tails, when the interval length exceeds a certain threshold
∆σmax the sampling becomes uniform to the threshold value. This technical
detail is needed to bound the step-size, since too large values of ∆σ could
result in divergence of the algorithms to find VIs, effectively cutting the
LOV tails out from the analysis. To avoid this loss and also to keep a better
control of the cases in which a geometrically large VI occurs for large values
of σ, the sampling interval has been extended to |σ| ≤ σmax = 5 (and also
to cover the same interval as JPL’s Sentry system).

We now derive a condition for the step-size to guarantee a constant
probability to each sampling interval. This is achieved by repeating the

3The TP radius adopted for the close approaches detection was RTP = 0.2 au '
4700RC, the LOV sampling was performed with 2401 virtual asteroids over the interval
|σ| ≤ 3, thus ∆σ = 0.0025.
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same argument of Section 4.1, not around the nominal solution, but around
the VA corresponding to a generic σ value. In particular, to have at least
one point on the TP corresponding to the LOV parameter σ, the stretching
must satisfy the condition

S(σ) ≤ 2RTP
∆σ(σ)

— Smax(σ).

Under linearity assumptions, the impact probability of the VI around the
value σ of the LOV parameter is given by

IP (σ) ' 2bC

S(σ)
· p(σ) ≥ 2bC

Smax(σ)
· p(σ).

We can define
IP ∗(σ) –

bC

RTP
∆σ(σ) · p(σ), (4.4)

which is the minimum probability of a detectable VI around the value σ
of the LOV parameter. To ensure the detection of a VI with probability
IP ∗(σ) for all |σ| ≤ σmax, we have to define the generic completeness as

IP ∗ – sup
|σ|≤σmax

IP ∗(σ).

Notice that we can take the supremum since IP ∗(σ) is bounded from above.
Using (4.4), this implies the following condition on the step-size:

∆σ(σ) ≤ RTP
bC

IP ∗
1

p(σ)
.

We have thus proved the following result.

Theorem 4.1. Let us assume that the LOV projection on the TP is a
straight line passing through the Earth center, that f(σ) = 0 for some σ
is the Earth centre and that it is the only point on the TP. Suppose that the
generic completeness level is IP ∗. Then the step-size of the LOV sampling
at σ satisfies the following inequality:

∆σ(σ) ≤ RTP
bC

IP ∗
1

p(σ)
.

By assuming bC = 2RC as above, we can select the step-size to be the
maximum allowed value given the previous inequality.

The computation of ∆σi – ∆σ(σi) starts from the value σ0 = 0 (corre-
sponding to the nominal solution), and by recursion we compute ∆σi = min

{
RTP
2RC

IP ∗
1

p(σi)
,∆σmax

}
, i ≥ 0

σi+1 = σi + ∆σi, i ≥ 1

(4.5)
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for the sampling of the interval 0 ≤ σ ≤ σmax. For the negative side, that
is the interval −σmax ≤ σ ≤ 0, the nodes are {σ−i}i≥0 with σ−i = −σi
for all i = −M, . . . , M . By definition of IP ∗, the step-size is chosen in
such a way that the inverse image of the diametrical chord has the same
probability for all σ. And this in turn implies that each sampling interval
has the same probability. Of course this holds only for the intervals with
length not exceeding ∆σmax.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10-3

10-2
Non-uniform step

Uniform step (= 0.0025)

Figure 4.1. Graph of the step-size as a function of the LOV parameter σ, with the
parameter choice as in (4.6). Orange line: step-size for the uniform-in-probability
sampling. Green line: uniform step-size, as previously used by clomon-2.

The method allows one to choose the completeness limit before the sam-
pling procedure starts. Thus the number of VAs per LOV side is known
only at the end, since the procedure (4.5) stops when σmax is exceeded.
This is somewhat different with respect to the previous method, for which
we first established the number of VAs per LOV side and as a consequence
the completeness level was determined (as in equation (4.3)). To observe
the behaviour of the step-size as a function of the LOV parameter σ refer to
Figure 4.1. It was generated using the following values, which are the same
used for the current impact monitoring computations:

IP ∗ = 1 · 10−7, σmax = 5, ∆σmax = 0.01. (4.6)
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This choice of parameters leads to the computation of at most 4719
multiple solutions4, whereas at most 2401 VAs were computed with the
previous sampling method (Milani et al. 2005a). This gives about twice
the computational load than before, that however permits a decrease by a
factor ' 4 in the generic completeness limit, since the value corresponding
to the previous uniform sampling was IP ∗ ' 4.24 · 10−7, as computed in
Section 4.1.

4.3 Missing VI detection: possible causes

The goal we posed by the generic completeness limit is to find all the vir-
tual impactors with probability greater than IP ∗. This goal might not be
achieved in actual computations, that is some VI is not detected by the scan.
The identification of the causes and the development of possible solutions
are important issues in impact monitoring. In what follows, we discuss two
examples we encountered in this study.

4.3.1 Duplicated points in the same return

In Section 1.5.4 we have defined showers and returns as particular dynami-
cally related subsets of the set of close encounters of all the virtual asteroids.
The associated iterative procedure properly works as long as the showers are
well-defined. Indeed, there are cases in which there is not a clear clustering in
time among the encounters, causing the presence of very long showers (also
called extended showers) in the decomposition. As a consequence, some vir-
tual asteroids appear multiple times in the same return, and this must be
avoided for the subsequent TP analysis to be successful. In general, several
phenomena may cause this problem, for instance temporary capture of the
asteroid by the Earth, Earth-like orbit (as for 2000 SG344) and encounters
with low relative velocity. There are also cases in which a close approach,
defined in time as the interval in which the distance from the encountered
body is less than some Dmin (for the Earth Dmin = 0.2 au), contains multi-
ple occurrences of a local minimum distance, and this also generates returns
with duplicated points. Such bad cases are not so rare as one may think,
especially if we use a denser LOV sampling. The problem affects ' 25% of
the asteroids in the NEODyS risk list (as of April 2018).

An example of such situation is given by asteroid 2000 SG344, already
used to present the problem of duplicated virtual asteroids in Milani et al.
(2005b), Figure 6. We show a figure which cannot be identical to the one

4The number of VAs may actually be lower, because we terminate the sampling when
the residuals become too large, currently when χ > 5.
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in Milani et al. (2005b) since, even if the observational data set is exactly
the same, it is currently treated with a different astrometric error model.
Figure 4.2 shows a single extended shower for 2000 SG344 lasting for about
one year. In this situation the previous algorithm identifies a single shower
around the year 2069. Figure 4.2 shows the closest encounter date of the
points belonging to the extended shower, against the LOV index. The clus-
tering into returns is clear from the picture, but there are returns with
multiple occurrence of the same virtual asteroid, as highlighted in orange.
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Figure 4.2. Extended shower around the year 2069 for asteroid 2000 SG344. For each
virtual asteroid belonging to the shower, we plot the closest encounter date against the
LOV index (black crosses). The virtual asteroids that appear more than one times in
the same return are highlighted (orange triangles).

To handle such cases, we decided to introduce a further splitting proce-
dure every time a return contains duplicated virtual asteroids. This leads
to the definition of sub-showers and sub-returns. First, we sort the return
by ascending closest approach time, then we scan and divide it as follows:
we cut the return every time a virtual asteroid is already present among the
previous ones, starting from the previous cut. Each subset obtained in this
way is called a sub-shower. Second, each sub-shower is divided into con-
tiguous LOV segments, called sub-returns, in the same way we obtain the
returns from the showers. Section 4.3.2 contains a mathematical description
of the procedure just described, with a formal proof of completion. Thus
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the decomposition algorithm ensures that each sub-return is free from du-
plicated virtual asteroids. Then we use, as returns of the original shower,
all the sub-returns of all the sub-showers. Figure 4.3 shows the outcome
of the application of the splitting procedure to the return going from LOV
index 1414 to 2779. As a graphical representation of the algorithm, we pass
a horizontal line from the bottom to the top of the plot to scan the return
by ascending closest approach time and we make a cut when we encounter a
duplication. The return is decomposed into three sub-showers (represented
with different marks and colors), each of which is further decomposed in
contiguous LOV segments.

It is apparent from Figure 4.3 that our algorithm splits more than the
minimum possible, e.g., in this figure it can be seen that there are two cuts
splitting dynamically related encounters (the second and third horizontal
lines starting from the bottom). However, this has no negative consequences
on the performance of the VI detection, because even the LOV interval
between the last index of a sub-return and the first of the next is actually
scanned, by using the algorithms for the tail and head of the return (Milani
et al. 2005b). The split is different from the one performed by Sentry, but
the result in terms of impact monitoring is the same.

In the work carried out for the switch to the new sampling of the Line
Of Variations, we implemented the splitting procedure into sub-showers and
sub-returns, thus the results presented in Section 4.4 take already into ac-
count also this improvement.

4.3.2 Proof of completion for the decomposition scheme

In this section we provide a detailed description of the procedure to de-
compose a return with duplications into sub-returns, giving a mathematical
proof of completion.

A return R is given by a contiguous LOV segment, that is the indexes
of the corresponding virtual asteroids are consecutive. Let IR be this set of
indexes. Let nR the number of distinct close approaches of the return R.
We rigorously define the return to be

R– {(ik, tk) : ik ∈ IR}k=1, ..., nR ,

considering R as the set of couples given by the LOV index and the cor-
responding closest approach time. We also assume that the sequence of
times (tk)k=1, ..., nR is non-decreasing, that is tk+1 ≥ tk for all k. We
now suppose that the return contains a duplication, that is there exist
k1, k2 ∈ {1, . . . , nR} such that k1 6= k2 and ik1 = ik2 , in such a way that
the return has to be further decomposed.
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Figure 4.3. Application of the decomposition procedure to a return of the extended
shower of 2000 SG344. The return is decomposed into three sub-showers, represented
with different marks and colors (orange, green, and gray, respectively). We mark with
a black circle the first point (in terms of time) of each sub-shower: in particular, the
first LOV indices of the three sub-showers are 1604, 1414 and 1766, respectively.

For 1 ≤ s ≤ nR define Is – {ik : 1 ≤ k < s}. We now want to
recursively define the sequence (sn)n≥1 of the beginning points of the sub-
showers. Let s1 = 1 and, for n ≥ 0 define

sn+1 = min
sn<s≤nR

{s : is ∈ Is \ Isn}

or sn+1 = nR in case the minimum does not exist because the set is empty.
By definition (sn)n≥1 is a non-decreasing sequence. Since sn ≤ N for all
n ≥ 1, there exists ns such that

s1 < s2 < · · · < sns and sn = nR for n > ns.

The integer ns is the number of sub-showers in R. For 1 ≤ n ≤ ns let
In – Isn+1 \ Isn be the set of the indexes of each sub-shower. Note that the
indexes in In are pairwise distinct by construction. Moreover, the collection
{In}1≤n≤ns is a partition of {1, . . . , nR}. The sub-showers of R are thus
defined to be

Sn – {(ik, tk) : k ∈ In}
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for 1 ≤ n ≤ ns and

R =

ns⊔
n=1

Sn.

There is no guarantee that the indexes in a sub-showers are consecutive, thus
each sub-shower is further decomposed in sub-returns by taking contiguous
LOV segments. Rigorously, for each 1 ≤ n ≤ ns there exist an integer rn ≥ 0
and a collection of rn subsets {Rn,m}m=1, ..., rn ⊂ Sn such that the indexes
of Rn,m are a maximal set of consecutive numbers among the indexes of Sn
and such that

Sn =

rn⊔
m=1

Rn,m.

In this way we obtain

R =

ns⊔
n=1

rn⊔
m=1

Rn,m,

the decomposition of R in sub-returns. Given this formal procedure, since
the initial number of close approaches contained in starting return is finite,
it is proven that the procedure has a finite number of steps, at the end of
which there are no duplicate points.

4.3.3 Extreme non-linear cases

When there is a strong non-linearity due to previous close approaches, the
stretching is large and rapidly varying, causing the LOV behaviour to be
complex. Thus strong non-linearity of the map g introduced in Section 1.5.3
can lead to unsuccessful detections of virtual impactors.

Inside a return, only some intervals between consecutive VAs can con-
tain a minimum of the closest approach distance and they are identified by
a geometric classification (Milani et al. 2005b). The analysis continues by
checking if the minimum distance could be small and, if so, by applying iter-
ative schemes and interpolation along the LOV to determine the minimum
distance and the corresponding LOV orbit, respectively. In most cases, both
clomon-2 and Sentry use the modified regula falsi applied to the continuous
function f(σ) = dr2

dσ (σ), introduced in (1.3), over the interval [σ1, σ2] under
consideration, where r2(σ) is the square of the distance from the Earth cen-
tre. This algorithm is convergent, but failure may occur if for some value
of σ in the interval the function is undefined. It happens in case the TP
of the encounter around that date is missed, which generally indicates that
the two TP points under consideration do not actually belong to the same
return (Milani et al. 2005b).
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Another typical situation that may determine an unsuccessful detection
is caused by singletons. They are returns consisting of one single point on
the target plane, due to a very high value of the stretching at the corre-
sponding LOV point and indicating an extremely non-linear situation. By
definition the modified regula falsi cannot be applied in this case. The so-
lution adopted by clomon-2 is the Newton method with bounded steps
(Milani et al. 2005b): this method cannot diverge, but can fail to converge
either by finding a value of σ for which the TP is missed, as in the previ-
ous case, or by exceeding a preset maximum number of iterations without
achieving convergence with the required accuracy. In both cases there is the
possibility that a VI actually exists in the analysed LOV segment, but the
method fails in detecting it. A possible solution is to resort to a densifica-
tion technique. If we suitably densify the LOV sampling around the orbit
corresponding to the singleton, and obtain a return with 4-5 points on the
target plane instead of a lone point, this makes the TP analysis easier and
more effective. Indeed, Figure 4.5 shows that the power-law fits well only
for values of IP corresponding to at least 4 points on the TP. We did not
implement the densification of the sampling, though we intend to include it
in our future work as discussed in Section 4.7.

4.4 Results

After the switch to the new sampling method, the actual level of complete-
ness reached by the system has to be measured in some way and compared
with the one corresponding to the previous method. To perform this analy-
sis we make use of the histograms of the number of virtual impactors N as
a function of the inverse of the impact probability IP (for the sake of clarity
we used log10(1/IP ) on the horizontal axis). We made a histogram for the
ensemble of VIs obtained using a uniform step-size in σ (previous sampling
method employed by clomon-2) and a second one for the results of the new
sampling method, uniform in probability, on the same set of asteroids, with
the observations available at the same date. We used the data contained in
the NEODyS database immediately before and after clomon-2 switched to
the new method, namely on 29 October 2016. As a sample, we used the 571
asteroids in the NEODyS Risk List at that time, thus computed with the
uniform sampling in the LOV parameter σ. As a result of the application
of the new method we obtain a set of 558 asteroids with virtual impactors
out of 571. The two histograms are shown in Figure 4.4 and 4.5 (left panel).
The first thing that stands out is the very different total number of virtual
impactors: the application of the new method almost doubled this number,
causing an increase from 13604 to 25942 virtual impactors.
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In both the histograms there are two vertical lines corresponding to two
different values of impact probability:

• the orange line represents the impact probability corresponding to the
assumption that a VI is detectable with at least one target plane point
(which is the minimum requirement), in full linear conditions5;

• the red line represents the impact probability corresponding to the
assumption that at least two target plane points are needed for the
detection of a virtual impactor.

The part of the histogram on the left of the orange line corresponds to
IP > IP ∗, namely to the impact probabilities of the virtual impactors that
the system should detect with certainty. The number of virtual impactors
N is expected to grow as the impact probability goes down to IP ∗. Even
looking just to the histogram bars we notice that the growth of N seems
to slightly slow down close to the vertical lines with respect to what one
would expect. To highlight this behaviour we fitted the histogram contour
for IP > IP ∗ with a suitable law: the best-fit line is represented in light
blue in both plots of Figure 4.4 and 4.5 and it was obtained with a linear
correlation coefficient > 0.99 in both cases. In particular, we performed a
linear fit of the histogram contour in a log-log scale: Figure 4.4 and 4.5
(right panel) show the points corresponding to the histogram bar tips, those
selected for the fit, and the best-fit line. A linear fit in the log-log plot
corresponds to a power-law for the number of virtual impactors, that is

N = n(IP ) = c1 ·
(
IP ∗

IP

)α
if IP ≥ IP ∗. (4.7)

As a result we obtained the estimation α ' 0.678 for the histogram
related to the uniform sampling, and α ' 0.664 for the histogram related
to the uniform-in-probability sampling. These results are remarkably close,
even if obtained with different sampling of the LOV. Furthermore, other
results of this paper (see Section 4.5 and Section 4.6) seem to confirm this
numerical evidence. At this point we are still not able to provide a full
interpretation of the value of α ' 2/3 as a mathematical property of the
ensemble of all the VIs. Nevertheless, as a first step in this direction, in
Section 4.5 we outline a possible model to explain the growth of the number
of virtual impactors N as a function of the time.

For IP < IP ∗, the probability to find a virtual impactor with impact
probability IP is roughly the ratio IP/IP ∗. Thus the expected number of

5This is the assumption used for the computation of the generic completeness limit,
as stated at the beginning of Section 4.1.
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Figure 4.4. Left panel. Histogram of the number of virtual impactors (as of October
2016) as a function of the inverse of the impact probability, in the case of uniform
sampling in σ. Right panel. Log-log plot of the histogram bar tips and corresponding
regression line, providing α ' 0.678.
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Figure 4.5. Left panel. Histogram of the number of virtual impactors (as of October
2016) as a function of the inverse of the impact probability, in the case of uniform-
in-probability sampling. Right panel. Log-log plot of the histogram bar tips and
corresponding regression line, providing α ' 0.664.

virtual impactor is

N = n(IP ) · IP
IP ∗

= c1 ·
(
IP ∗

IP

)α−1

if IP < IP ∗.

This equation corresponds to the descending green line in both plots. We
notice that this line does not fit the right side histogram contour: there are
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more virtual impactors than expected from this law. For the results obtained
with the new sampling, this can be exaplained by considering that the LOV
sampling returns to be uniform in σ close to the LOV tails, and thus in that
region the LOV is over-sampled with respect to what would be needed to
reach the completeness level IP ∗. With the old sampling, the production of
VIs with low impact probability is still larger, because the sampling was not
optimized specifically for IP > IP ∗.

The differences between the fitted ascending curve corresponding to
equation (4.7) and the histogram clearly show that there is a loss of effi-
ciency in finding virtual impactors with impact probability slightly above the
completeness level. Indeed, for these impact probability values the expected
number of VIs, based on the empirically fitted power-law, is larger than
the number of actually detected ones. To define the generic completeness
limit we make the assumption that even a single point on the target plane
allows the system to detect the virtual impactor, but from a practical point
of view this completeness level cannot be reached due to non-convergence
of the iterative schemes in some difficult cases, as explained in Section 4.3.
Actually, this does not happen only with a single point on the target plane
(singleton), but even with very few points. As discussed in Section 4.7, a
densification of the LOV sampling is the way to fill the gap between the
actual completeness level and the theoretical generic completeness. A pos-
sible densification technique could convert returns with very few points into
return with at least 4-5 points. As a result, the used iterative methods (such
as regula falsi and Newton’s method with bounded steps) should converge
in a larger number of cases and the VI search could be more efficient and
complete.

4.5 Analytical formulation for the time evolution

We analyse the behaviour of the cumulative number of virtual impactors
N as a function of the time elapsed from the initial conditions. As starting
sample we used all the asteroids in the NEODyS Risk List (as of April 2018),
which contained 734 objects and 32906 virtual impactors, without consider-
ing the special cases6. The histograms of Figure 4.6 show the distribution
of the inclination i and of the absolute magnitude H among the considered
objects. As clear from simple arguments, the majority of the sample con-
tains small low-inclination asteroids: for instance, 95.5% of the sample has
absolute magnitude H > 22 and 71% has inclination i < 5 deg.

6The four special cases are (101955) Bennu, (99942) Apophis, (29075) 1950 DA, and
(410777) 2009 FD. These are currently the only asteroids that required the inclusion of
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Figure 4.6. Left panel. Histogram of the inclination i (deg). Right panel. Histogram
of the absolute magnitude H. Both the plots are referred to the set of 734 asteroids in
the NEODyS Risk List (as of April 2018).

The sample of virtual impactors for the time evolution has to be com-
plete, that is it has to contain all the possible virtual impactors with IP
down to a certain threshold. Thus the results of the new sampling of the
LOV are a good starting point, since the new method ensures a complete vir-
tual impactors search down to IP ∗ = 1 · 10−7. To take into account the loss
of completeness due to singletons, as discussed in Section 4.3 and 4.4, we se-
lected the virtual impactors with IP > 2·10−7: the filtered set contains 6084
virtual impactors, corresponding to 473 asteroids. We then applied a second
filter, considering the virtual impactors corresponding to low-inclination as-
teroids, i.e., i < 5 deg, since the discussion below holds in an exact way in
the planar case. In the end we analysed a sample of 5313 virtual impactors
with IP > 2 · 10−7 and i < 5 deg.

For a single asteroid, the accumulation of virtual impactors with time
depends on the time elapsed since the first observed close approach. We
call this relative time trel, assuming as origin (trel = 0) the time of the first
observed close approach. The exact computation of trel for each asteroid in
the risk list would be complicated, but, by taking into account Figure 4.6
(right panel), we see that the vast majority of the asteroids in the risk list
is composed by very small objects. As a consequence, they can only be
discovered during a close approach. For almost all of the asteroids in the
risk list the centre of the observed arc is thus a good approximation of the
origin trel = 0. Thus, for each asteroid in the risk list, we sorted the set
of its virtual impactors by time and we computed the relative time of each
one of them with respect to the centre of the observed arc. Figure 4.7 is the
log-log plot of the cumulative number of virtual impactors up to each value

the Yarkovsky effect for the impact monitoring.
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of the relative time (blue and green marks). The log-log plot clearly shows
a linear growth, which we try to determine with a linear fit. However, for a
more accurate fit we have to cut out the tails of the ostensible line. The tail
for low relative times because its contribution is weakened by small number
statistics. In the tail for high relative times the growth seems to slow down,
but this is due to the fact that the maximum relative time for which the
scan for VIs has been performed changes from asteroid to asteroid. Thus
we performed the linear fit over a suitable interval t1 ≤ trel ≤ t2. This fit
corresponds to a power-law, that is

N = c2 · tβrel if t1 ≤ trel ≤ t2.

Choosing t1 = 40 y and t2 = 99 y we obtained β = (3.001 ± 0.001), with
a linear correlation coefficient 0.9994. The points marked with green circles
in Figure 4.7 are those selected for the linear fit, and the orange straight
line is the resulting best-fit line. The histogram in Figure 4.8 is the cu-
mulative histogram of the number of virtual impactors as a function of the
relative time. The plot represents the same quantity of Figure 4.7 with an
histogram, but not in a log-log scale. The colours have the same meaning
as for Figure 4.7: the green part corresponds to the tail of the log-log plot
used for the linear fit and the orange line is the best fit power-law. Given
the approximations introduced in the model, this fit is remarkably good and
identifies the power-law proportional to t3rel with very low uncertainty.

We now give a qualitative argument to explain why the tail of the cu-
mulative histogram follows a power-law with exponent ' 3. We do this in
the framework of the analytical theory of close encounters as developed in
Valsecchi et al. (2003), whose results agree with those of the circular re-
stricted three-body problem (Valsecchi et al. 2018). We consider the target
plane coordinates ξ and ζ: the former corresponds to the signed local MOID,
whereas the latter is related to the timing of the encounter. We use the wire
approximation (Valsecchi et al. 2003; Milani et al. 2005b), that is we assume
that the LOV projection on the target plane of a given encounter is a con-
tinuous sequence of points, all with the same value of ξ and differing only
for the value of ζ.

The condition for a collision at a resonant return to take place is that
the ratio of the period of the small body and that of the Earth is k/h,
with k and h relatively prime integers. Then, following the first encounter,
after h heliocentric revolutions of the small body and k revolutions of the
Earth, both the Earth and the small body will be back to the same position
(Milani et al. 1999; Valsecchi et al. 2003). This situation means that the
post-encounter semimajor axis a′ has to have precisely a certain value, say
a′?, with the corresponding mean motion n′?. For the Kepler’s third law, the
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Figure 4.7. Log-log plot of the cumulative number of virtual impactors N as a
function of the relative time trel (y). The points selected for the linear fit are marked
with green circles. The orange straight line is the best-fit line obtained from the linear
fit.
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Figure 4.8. Plot of the cumulative number of virtual impactors N as a function of
the relative time trel (y).
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latter has to be

n′? =

(
h

k

)2/3

. (4.8)

As shown in Valsecchi et al. (2003) and in the appendix of Spoto et al. (2014),
the values of a′ are constrained between a maximum and a minimum, say
a′max and a′min, to which correspond n′min and n′max respectively. Consider
now the time interval in which we are interested: since t2 ' 99 y, it is clear
that we have to consider all the values of n′min ≤ n′ ≤ n′max that, expressed
as in (4.8), have k < 99. Thus the number of of collision possibilities, i.e., of
virtual impactors, is proportional to the number of encounter opportunities.
This number accumulates in the same way as the number of elements of Fr,sn ,
which is the set of irreducible fractions between two integers r and s > r, and
whose denominators do not exceed n (see Appendix B). Theorem B.20 states
that the number of elements of Fr,sn grows like n2 and that it accumulates
as n3, which is the result highlighted from the fit of Figure 4.8.

The above reasoning holds in an exact way, even for a single small body,
in the planar circular restricted three-body problem with Jacobi constant J
sufficiently high to ensure the small body will not be expelled on a hyper-
bolic orbit, i.e., J > 2

√
2 (Carusi et al. 1982). The hypotheses on which

our analytical estimate is based are an approximation of the more complex
problem of asteroid close approaches, nevertheless the general trend turns
out to be confirmed by our statistical analysis. If we add back to the list of
asteroids with VIs (with IP > 2 · 10−7) the ones with not low inclination,
i > 5 deg, the fit for the slope in the log-log plot gives β = 2.829, indicating
that the model we have proposed can represent accurately the statistics of
the VIs time distribution only in the low inclination case, as expected.

Note that the slope predicted by the Farey number-theoretical arguments
refers to the number of close approaches to the Earth, not to the number of
collisions. The fact that the histogram of VIs as a function of trel follows the
same power-law expected for the number of close approaches indicates that,
on average, the number of collisions is proportional to the number of close
approaches. This is by no means an obvious result. The possibility of an
impact during such a close approach is controlled by the MOID (Minimum
Orbital Intersection Distance) at the time of the encounter: if the MOID is
larger than the radius bC of the Earth impact cross section, collisions cannot
occur. The MOID changes both as a consequence of short-periodic pertur-
bations and because of secular perturbations slowly changing the MOID
through the Lidov-Kozai cycle (Gronchi et al. 2001). The empirical finding
that the impact probability and the probability of a close approach are pro-
portional, at least as a mean over thousands of cases, would indicate that
the MOID can be modeled as a random variable.
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4.6 Comparison with JPL results

We performed a global comparison between the results of clomon-2 and
Sentry. An asteroid-by-asteroid comparison is beyond the scope of this chap-
ter, thus we present a statistical comparison using histograms like those
shown in Section 4.4. In particular, we take the ensemble of all the virtual
impactors computed by clomon-2 and Sentry at the same epoch (April
2018). Figure 4.9 refers to the results of clomon-2 and Figure 4.10 to the
ones of Sentry: both plots represent the number of virtual impactors N as
a function of the inverse of the impact probability IP .

Both plots show a very good agreement in the ascending part up to
IP ' 2IP ∗ = 2 · 10−7 (vertical red line). To strengthen this argument we
also performed a linear fit of the histogram contour for IP > IP ∗, as in
equation (4.7). The exponent of the power-law resulted to be α ' 0.664 for
the clomon-2 results and α ' 0.679 for the Sentry results. The number of
VIs obtained by Sentry at IP ' 2IP ∗ is somewhat lower than our number
and it is the cause for the difference in the values of the multiplicative
constant c1 of equation (4.7) obtained from both fits.
For much lower impact probabilities, the two plots show some differences.
The loss of efficiency in the region between the two vertical lines is a common
feature, but our histogram is increasing whereas the one related to Sentry
begins to slightly decrease. Overall the behaviour of the two systems in
the detection of VIs with IP > IP ∗ is very well consistent, which was one
of the goals of the improvements in our system, that is the reason why we
wanted to decrease our generic completeness. The biggest difference is in the
right parts of the histograms: our plot is strictly decreasing, corresponding
to the fact that the number of expected virtual impactors grows but the
probability to detect them simultaneously decreases, whereas the histogram
related to Sentry shows a peak around IP ' 10−9. This behaviour might
be explained by differences in the computation techniques, in particular in
the treatment of the off-LOV virtual impactors (Milani et al. 2005b), which
usually have very low impact probabilities. To explain the details in the
differences between the two histograms, they would need to be investigate
in collaboration with the JPL team.

In conclusion, the global comparison confirms a very good agreement
between the two systems. The differences we found are mostly explained by
technicalities of the methods used in the impact monitoring computations
and anyway mostly regard very low probability VIs. Of course this does
not exclude differences, in particular in the computed IP for each virtual
impactor, which necessarily arise because we are currently using two different
error models for the astrometric observations, also taking into account that
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these error models are incomplete for lack of metadata. The fact that the
results for IP > IP ∗ are very similar in terms of the number of VIs found
is a very significant result, since two different error models have been used.
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Figure 4.9. Histogram of the number of virtual impactors in the NEODyS Risk List
as a function of the inverse of the impact probability (as of April 2018).

1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500
IP* = 1 10-7  (1 VA on TP)

IP* = 2 10-7  (2 VA on TP)

Power law (ascending)

Figure 4.10. Histogram of the number of virtual impactors in the Sentry Risk List
as a function of the inverse of the impact probability (as of April 2018).
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4.7 Conclusion and future work

We reported on two improvements of our impact monitoring system clomon-
2 with respect to what was described in (Milani et al. 2005b). The first one
was a correct handling of the cases in which a return on the target plane
of the Earth includes two instances of the same virtual asteroid. This was
done by using a recursive splitting of the showers, thus radically eliminat-
ing these duplications. The second was to decrease the impact probability
corresponding to the generic completeness, which was previously ' 4 · 10−7,
to 1 · 10−7. We did not achieve this result by brute force, that is by using
four times more virtual asteroids, but by using a sampling of the Line Of
Variations optimized by a uniform probability for each segment, at least for
the portion closer to the nominal solution.
Both improvements have been implemented in the operational software and
fully tested, by recomputing the entire risk list, that is the asteroids known
to have VIs. Note that both the improvements we have implemented were
removing differences between the algorithm used in the Sentry system of JPL
and our clomon-2. Thus, having implemented these two improvements, we
were for the first time able to perform a full statistical comparison between
the global results of clomon-2 and those of Sentry, since the two systems
should now be giving more similar results.

When we first produced this kind of histograms of the number of VIs
found in all the risk list asteroids, as a function of variables such as 1/IP
and the stretching S, we found empirically that the number of detected
virtual impactors with IP > IP ∗ appeared to grow according to a power-
law, proportional to IP−2/3. As shown in the figures of this chapter, we have
tested that this result, numerically quite accurate, was obtained with the
risk list as computed with different sampling of the LOV and with different
values of IP ∗ (compare Figure 4.7 and Figure 4.8), as computed at different
dates (compare Figure 4.8 and Figure 4.9), and for risk lists at the same
date but computed with different software and different astrometric error
models (compare Figure 4.9 and Figure 4.10). Thus we are lead to believe
that we have experimentally found a fractal property of the set of the initial
conditions leading to impacts in the chaotic dynamical system of planet
crossing asteroids. We must admit we do not yet have a model explaining
this power-law. We suspect it is related to the power-law by which the
cumulative number of VIs within a time trel from the first observed close
approach grows proportional to the power-law t3rel, for which we have found
a number-theoretical argument. However, for the connection between the
two power-laws we have not yet found a model, which we suspect to hide in
properties of the chaotic orbits of near-Earth asteroids.
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Still, the use of the empirical law IP−2/3 allows us to explore, for the first
time, the effective completeness of the impact monitoring systems: of course
this completeness cannot extend beyond the generic completeness limit IP ∗.
The results are encouraging, in that both clomon-2 and Sentry are not just
statistically consistent, but also consistent with the empirical power-law,
down to an IP ' 2 · 10−7. This is a significant achievement, because we
never had a “ground truth” against which to assess our performance. Since
the two impact monitoring systems are currently using two different error
models for astrometric observations, by using the standard argument that
the difference between the last two models can be considered an estimate of
the inaccuracies remaining in the last one, this indicates also robustness of
our results with respect to the astrometric error model.

The discussion above clearly indicates the directions we should move in
our future work. First, we would like to close the gap between the generic
compleness at IP ∗ = 10−7 and the effective completeness (resulting from
the comparison with the power-law) at IP ' 2 · 10−7. In principle we
know how to do this by densification of the cases in which a return contains
too few points on the target plane, but we would like to find a solution
which is not brute force and this requires some effort, but appears feasible.
Second, we need to investigate in depth the issue of the VI histogram power-
law, to understand if indeed it is a fractal property and provide at least
an approximate model explaining it, possibly starting from the success in
explaining the power-law with respect to time. This requires some new idea,
thus we are not able to claim that we shall solve this problem, but we shall
try. Also other researchers are welcome to try.





Chapter 5
The evolution of the LOV at close
encounters

The outcome of a planetary fly-by of a planet crossing small body strongly
depends on its coordinates on the target plane of the encounter. The asso-
ciated uncertainty is a function of the uncertainty in the orbital elements at
the time of the encounter, and in most cases of interest is dominated by the
uncertainty in the time of closest approach. A suitable choice of the target
plane coordinates is such that one coordinate represents the local minimum
distance between the orbit of the small body and that of the planet, and
the other is proportional to the timing of the encounter. In this way, the
uncertainty is mostly along a line parallel to one of the coordinate axes, and
can be modelled by the so-called Line Of Variations. The LOV approach is
a crucial ingredient of the impact monitoring software developed at the Uni-
versity of Pisa and at the JPL. In this study the post-encounter evolution
of fictitious small bodies belonging to the LOV is studied in the framework
of the analytic theory of close encounters. We show the consequences of the
encounter on the local minimum of the distance between the orbit of the
planet and that of the small body, and get a global picture of the way in
which the planetocentric velocity vector is affected by the encounter. The
analytical results are compared with those of numerical integrations of the
circular restricted three-body problem.

5.1 Extended Öpik’s theory of close encounters

The analytic theory of close encounters has been developed over the years,
starting from Öpik (1976), in a sequence of papers (Carusi et al. 1990; Valsec-
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chi et al. 2003; Valsecchi 2006; Valsecchi et al. 2016; Valsecchi et al. 2015),
to which we refer the reader. The basic assumptions are that the small body
is massless and the planet moves on a circular orbit about the Sun, simi-
larly to what is assumed in the circular restricted 3-dimensional three-body
problem. However, far from the planet, the small body is assumed to move
on an unperturbed heliocentric Keplerian orbit, not being subject to the
perturbation by the planet. The effect of the encounter is modelled as an
instantaneous transition from the incoming asymptote of the planetocentric
hyperbola to the outgoing one, taking place when the small body crosses the
plane orthogonal to the small body unperturbed velocity vector and contain-
ing the centre of the planet. This plane is called the b-plane. In particular,
the model ignores the perturbation due to the Sun and the time it actually
takes for the small body to travel along the curved path that “joins” the two
asymptotes.

To simplify the formulas, we use a system of units such that the distance
of the planet from the Sun is 1 (recall that the planet is on a circular orbit
around the Sun), and the period of the planet is 2π. We also assume that
both the mass of the Sun and the gravitational constant are equal to 1. We
disregard the mass of the planet in the heliocentric orbit of both the planet
and the small body, thus the heliocentric velocity of the planet is also 1.

We use a planetocentric reference frame (X,Y, Z) such that the Y -axis
coincides with the direction of motion of the planet, and the Sun is on
the negative X-axis. In this system, the components of the unperturbed
planetocentric velocity vector U of the small body are (Carusi et al. 1990)

 Ux
Uy
Uz

 =

 ±
√

2− 1/a− a(1− e2)√
a(1− e2) cos i− 1

±
√
a(1− e2) sin i

 (5.1)

and the planetocentric velocity is

U =

√
3− 1

a
− 2
√
a(1− e2) cos i.

This can be rewritten as U =
√

3− T , where T is the Tisserand parameter
with respect to the planet. The direction of the incoming asymptote is
defined by two angles, ϑ and ϕ, such that Ux

Uy
Uz

 =

 U sinϑ sinϕ
U cosϑ

U sinϑ cosϕ

 .
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The angles ϑ and ϕ can be computed from the orbital elements (Valsecchi
et al. 2003):

ϑ = arccos

√
a(1− e2) cos i− 1√

3− 1/a− 2
√
a(1− e2) cos i

, (5.2)

ϕ = arctan
±
√

2− 1/a− a(1− e2)

±
√
a(1− e2) sin i

. (5.3)

The numerator in the expression of ϕ is positive if the encounter takes place
in the post-perihelion branch of the orbit of the small body, and negative
otherwise, whereas the denominator is positive if the encounter takes place
at the ascending node of the orbit, and negative otherwise.

In the (X,Y, Z) frame, the motion of the small body along the incoming
asymptote is  X(t)

Y (t)
Z(t)

 =

 Ux(t− t0) +X0

Uy(t− t0) + Y0

Uz(t− t0)

 ,

where t0 is the time of node crossing by the small body, and the planetocen-
tric coordinates of the node at time t0 are X0 = X(t0), the nodal distance,
and Y0 = Y (t0), which measures how early or late the planet is for the
encounter.

5.1.1 Coordinates on the b-plane

Let us consider the vector b extending from the planet to the intersection
of the incoming asymptote with the b-plane. Its modulus is b – |b|, and
it is called the impact parameter. We use a coordinate system (ξ, η, ζ) such
that (ξ, ζ) are coordinates on the b-plane and the η-axis is directed along U.
The ξ-axis is perpendicular to the heliocentric velocity of the planet, and the
ζ-axis is in the direction opposite to the projection on the b-plane of the he-
liocentric velocity of the planet. The transformation from the planetocentric
reference frame (X,Y, Z) to the b-plane frame (ξ, η, ζ) is accomplished by
first rotating by an angle −ϕ about Y then rotating by −ϑ about ξ (which
is perpendicular to the old Y -axis and to U), that is ξ

η
ζ

 = Rξ
−ϑR

Y
−ϕ

 X
Y
Z

 .

It can be shown that the local Minimum Orbital Intersection Distance
(MOID, i.e., the minimum distance between the orbit of the small body and
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that of the Earth) is given by ξ, and that it is tied to the distance from the
node X0 by the simple expression (Valsecchi et al. 2003)

ξ = X0 cosϕ.

5.1.2 Pre-encounter state vector

In its original formulation, Öpik’s theory of close encounters does not use a
complete set of state variables. In a complete formulation, the six orbital
elements of the small body have to be transformed to a set also containing
six coordinates. They have been introduced in Valsecchi et al. (2003), to
form the state vector

V – (U, ϑ, ϕ, ξ, ζ, t0),

where t0 is the time of the ecliptic crossing by the small body. Equation (5.1),
(5.2) and (5.3) provide formulas to compute the first three coordinates of
the pre-encounter state vector V starting from the pre-encounter orbital
elements of the small body.

To compute ξ and ζ, we neglect terms of the second order in the miss
distance at the node, that is O(X2

0 +Y 2
0 ). As a consequence, the components

of the vector b extending from the planet to the intersection of the incoming
asymptote with the b-plane, are

ξ = cosϕ

[
a(1− e2)

1± e cosω
− 1

]

ζ = ξ cosϑ tanϕ− sinϑ

(
1 +

ξ

cosϕ

)
tan

(
Ω− λp −

π

2
± π

2

)
,

where the upper sign applies at encounters at the ascending node, and λp is
the longitude of the planet at time t0.

5.1.3 The encounter

As a consequence of the encounter with the planet, U is rotated into U′,
aligned with the outgoing asymptote, without changing the length: U ′ = U .
The rotation is instantaneous, and occurs when the small body crosses the
b-plane. The deflection angle γ between the two vectors is a function of U ,
the mass of the planet m, and the impact parameter b according to

tan
γ

2
=

m

bU2
=
c

b
,
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where c– m/U2 needs to be small to allow us to apply this theory1.
The close encounter can be seen as an operator E that maps the pre-

encounter state vector V, with components (U, ϑ, ϕ, ξ, ζ, t0), into the post-
encounter one V′, with components (U ′, ϑ′, ϕ′, ξ′, ζ ′, t′0)

V′ – EV.

The components of the post-encounter state vector, as functions of the pre-
encounter state vector components (with b =

√
ξ2 + ζ2), are

U ′ = U

cosϑ′ =
(ξ2 + ζ2 − c2) cosϑ+ 2cζ sinϑ

ξ2 + ζ2 + c2
(5.4)

sinϑ′ =

√
[(ξ2 + ζ2 − c2) sinϑ− 2cζ cosϑ]2 + 4c2ξ2

ξ2 + ζ2 + c2
(5.5)

sinϕ′ =
[(ξ2 + ζ2 − c2) sinϑ− 2cζ cosϑ] sinϕ− 2cξ cosϕ

(ξ2 + ζ2 + c2) sinϑ′
(5.6)

cosϕ′ =
[(ξ2 + ζ2 − c2) sinϑ− 2cζ cosϑ] cosϕ+ 2cξ sinϕ

(ξ2 + ζ2 + c2) sinϑ′
(5.7)

ξ′ =
ξ sinϑ

sinϑ′

ζ ′ =
(ξ2 + ζ2 − c2)ζ sinϑ− 2(ξ2 + ζ2)c cosϑ

(ξ2 + ζ2 + c2) sinϑ′

t′0 = t0 +
2c[ξ sinϕ(2ζ cosϑ− ξ tanϕ)− cosϕ(ξ2 sin2 ϑ+ ζ2)]

U sinϑ{[(b2 − c2) sinϑ− 2cζ cosϑ] cosϕ+ 2cξ sinϕ} .

Particularly noteworthy is the expression for ξ′, which gives the post-encounter
local MOID. We discuss its implications in Section 5.4.

5.1.4 Propagation to the next encounter

After the first close approach, the motion until the next encounter is treated
as a Keplerian propagation. It can be seen as an operator P that maps
the post-encounter state vector V′ in the pre-next-encounter one V′′, with
components (U ′′, ϑ′′, ϕ′′, ξ′′, ζ ′′, t′′0)

V′′ = PV′.

1Analytic theory of close encounters works as long as the region of space in which the
encounter takes place is “small,” so that the interaction can be thought as instantaneous.
This assumption breaks down as the Tisserand parameter approaches 3, i.e., when the
encounters take place at low planetocentric velocity.
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The transformation is given by:

U ′′ = U ′

ϑ′′ = ϑ′

ϕ′′ = ϕ′

ξ′′ = ξ′

ζ ′′ = ζ ′ − (mod[h · 2πa′3/2 + π, 2π]− π) sinϑ′

t′′0 = t′0 + h · 2πa′3/2,

where h is the number of revolutions of the small body in its orbit, and a′

is the post-first-encounter semimajor axis

a′ =
b2 + c2

(b2 + c2)(1− U2)− 2U [(b2 − c2) cosϑ+ 2cζ sinϑ]
.

5.2 Resonant returns

The orbital period of the planet is 2π, and that of the small body after
the encounter is 2πa′3/2 (by the third Kepler’s law). If the two periods are
commensurable, that is

(a′)3/2 = k/h,

with h and k integers, then after h periods of the asteroid k periods of the
planet have elapsed, and both the planet and the small body will be back
again in the same position of the previous encounter. Such a subsequent
encounter is called a resonant return. Also if the ratio of the period is not
exactly k/h, but is close, a subsequent encounter can take place, but the
planet will be earlier or later for the encounter than it was at the previous
one.

Valsecchi et al. (2003) proved that the locus of the points on a b-plane
leading to a resonant return is a circumference, called resonant circle and
sometimes referred to as Valsecchi circles. A given resonance corresponds to
a certain value of a′, i.e., of ϑ′, say a′? and ϑ′?. They are related by

cosϑ′? =
1− U2 − 1/a′?

2U
.

as follows from equations (5.2) and (5.1). The value of ϑ′? can be also
computed from the geometry of the deflection (see (5.4)) as

cosϑ′? =
(b2 − c2) cosϑ+ 2cζ sinϑ

b2 + c2
.
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Replacing b2 with ξ2 + ζ2 and rearranging terms we obtain

ξ2 + ζ2 − 2c sinϑ

cosϑ′? − cosϑ
ζ +

c2(cosϑ′? + cosϑ)

cosϑ′? − cosϑ
= 0.

This is the equation of a circle centred on the ζ-axis. If |R| is the radius of
such a circle, and D the value of the ζ-coordinate of its centre, its equation
is

ξ2 + ζ2 − 2Dζ +D2 −R2 = 0,

with
D =

c sinϑ

cosϑ′? − cosϑ
and R =

c sinϑ′?
cosϑ′? − cosϑ

. (5.8)

5.3 The wire approximation

In the wire approximation we consider the encounter of a stream of small
bodies spaced in mean anomaly (that is, in true anomaly and therefore in
ζ), all on the same orbit, with given local MOID ξ0 (Valsecchi et al. 2003).
Thus the small bodies have the same U , ϑ, ϕ and ξ = ξ0.

As a consequence of the encounter, U does not change and t0 does not
concern us here. What changes are the angles ϑ and ϕ, that are transformed
into ϑ′ and ϕ′. Section 5.1.3 gives the relevant equations to compute the
post-encounter quantities (remember that here ξ = ξ0).

5.3.1 Local minima and maxima of the post-encounter semi-
major axis

We want to compute the position of the local minima and maxima of the
semimajor axis after a planetary encounter. Since the post-first-encounter
semimajor axis a′ is monotonically related to the post-first-encounter value
of the angle ϑ′

a′ =
1

1− U2 − 2U cosϑ′

∂a′

∂ζ
=

2U

(1− U2 − 2U cosϑ′)2

∂ cosϑ′

∂ζ
,

the problem of finding the local maxima and minima of a′ as functions of ζ
reduces to that of finding the zeroes of ∂ cosϑ′/∂ζ. In the wire approxima-
tion, with ξ = ξ0, cosϑ′ is given by

cosϑ′ =
(ξ2

0 + ζ2 − c2) cosϑ+ 2cζ sinϑ

ξ2
0 + ζ2 + c2

.
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The derivative of cosϑ′ with respect to ζ is

∂ cosϑ′

∂ζ
=

2c[2cζ cosϑ+ (ξ2
0 − ζ2 + c2) sinϑ]

(ξ2
0 + ζ2 + c2)2

and since the denominator is always positive, the problem is to find the
zeroes of the numerator. The latter is of degree 2 in ζ, thus there are only a
point ζ+ of maximum and a point ζ− of minimum of cosϑ′, and thus of a′.
From

sinϑζ2 − 2c cosϑζ − sinϑ(ξ2
0 + c2) = 0

we obtain

ζ± =
c cosϑ±

√
c2 + ξ2

0 sin2 ϑ

sinϑ
. (5.9)

The difference

ζ+ − ζ− = 2

√
c2

sin2 ϑ
+ ξ2

0

gives us the size of the most interesting region, where the largest variations
of final semimajor axis take place.

5.4 Post-encounter local MOID along the wire

On the post-encounter b-plane the size of the post-encounter impact pa-
rameter b′ must be the same as that of the pre-encounter one b, due to
the conservation of the planetocentric orbital angular momentum. Thus the
post-encounter local MOID ξ′ is bounded:

0 ≤ ξ′ ≤ b =
√
ξ2 + ζ2.

Moreover, since ϑ and ϑ′ take values between 0 deg and 180 deg (Carusi
et al. 1990), ξ and ξ′ have the same sign (remember that they are defined
on two different planes).

Let us now discuss the variation in size of the local MOID due to the
encounter for the wire ξ = ξ0. Equations (5.4) and (5.5) show that the larger
the value of |ζ| the closer ϑ′ will be to ϑ and thus the closer ξ′ will be to ξ0.
For smaller values of |ζ|, there must be a minimum and a maximum value
of sinϑ′, that correspond respectively to the maximum and minimum values
of ξ′. To find them, let us consider the derivative of sinϑ′ with respect to ζ:

∂ sinϑ′

∂ζ
=
∂ sinϑ′

∂ cosϑ′
∂ cosϑ′

∂ζ
= −cosϑ′

sinϑ′
∂ cosϑ′

∂ζ
.
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The zeroes of ∂ sinϑ′/∂ζ include those of ∂ cosϑ′/∂ζ, as well as the values
of ζ such that cosϑ′ = 0. As regards the zeroes of ∂ cosϑ′/∂ζ, these can
be found by zeroing the numerator of this derivative, since its denominator
cannot be negative. The corresponding two values of ζ are given by equa-
tion (5.9). Concerning the values of ζ such that cosϑ′ = 0, they are given by
the intersections of the straight line ξ = ξ0 with the circle with centre (0, D)
and radius |R| given by equation (5.8) by imposing the condition cosϑ′ = 0,
that is

D = −c sinϑ

cosϑ
and R = − c

cosϑ
.

The equation of such circle is

ξ2 + ζ2 − 2Dζ +D2 = R2

and its intersections with the straight line ξ = ξ0 are the roots of the equation

ζ2 +
2cζ sinϑ

cosϑ
+ ξ2

0 − c2 = 0.

They are

ζ1,2 =
−c sinϑ±

√
c2 − ξ2

0 cos2 ϑ

cosϑ
.

Summarizing, the zeroes of ∂ sinϑ′/∂ζ are the following:

ζ± =
c cosϑ±

√
c2 + ξ2

0 sin2 ϑ

sinϑ

ζ1,2 =
−c sinϑ±

√
c2 − ξ2

0 cos2 ϑ

cosϑ
.

Note that for
|ξ0| > |R| =

c

| cosϑ|
there is no intersection of the circle corresponding to cosϑ′ = 0 with the
straight line ξ = ξ0, so that there are no real values for the roots ζ1,2.

The values of ξ′ corresponding to ζ± are

ξ′± =

√
c2 + ξ2

0 sin2 ϑ± c cosϑ

sinϑ
,

whereas those of ξ′ corresponding to ζ1,2, when present, are

ξ′1,2 = ξ0 sinϑ.
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Figure 5.1. The Earth encounter of 2012 TC4 on 12/10/2017. The plot shows the
deformation of the LOV for ξ0 = −4 and ξ0 = −2 Earth radii. The black circle
represents the Earth cross section. The black dots are the points belonging to the
two LOVs points. The red dots show, for ξ0 = 4, the corresponding points in the
post-encounter b-plane and the blue dots do the same for ξ0 = −2.

To see how the above expressions work in practice, we apply the analyti-
cal theory to the encounter of 2012 TC4 with the Earth that has taken place
on 12 October 2017. Figure 5.1 shows the b-plane relative to this encounter.
The black circle centred in the origin is the gravitational cross-section of
the Earth, and the unit adopted for the axes is the physical radius of our
planet. The black dots represent the points of the wire for two different
values of ξ, namely ξ0 = −4 and ξ0 = −2 Earth radii. The blue dots show
the post-encounter values ξ′ and ζ ′ corresponding to each pair (ξ0, ζ), for
ξ0 = −4 Earth radii, whereas the blue dots are the same for ξ0 = −2 Earth
radii. Note that to each pair (ξ0, ζ) corresponds a post-encounter pair (ξ′, ζ ′)
defined on a different post-encounter b-plane. In Figure 5.1 we plot both on
the same b-plane in order to show how the wire is deformed as a consequence
of the close encounter. It is noteworthy how the variation of the local MOID
can be, at least in this case, comparable to the radius of the Earth (see the
blue dots).
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a′ = 1.05 au

a′ = a

∂a′/∂ζ = 0

∂a′/∂ζ = 0

Figure 5.2. Same as Figure 5.1, highlighting relevant b-plane loci (Valsecchi et al.
2018). The cyan hyperbola corresponds to ∂ cosϑ′/∂ζ = 0. The black straight line
is the condition for ϑ′ = ϑ (Valsecchi et al. 2000), implying a′ = a and ξ′ = ξ. The
green circle is the condition cosϑ′ = 0 (in this particular case giving a′ = 1.05 au),
corresponding to ξ′ = ξ sinϑ.

Figure 5.2 is similar to Figure 5.1, but also shows the relevant b-plane loci
(Valsecchi et al. 2018) whose intersections with the LOV give origin to spe-
cific values of ξ′. These loci are the following:

(1) the condition ∂ cosϑ′/∂ζ = 0, shown by the cyan hyperbola;

(2) the condition ϑ′ = ϑ, shown by the black horizontal straight line;

(3) the condition cosϑ′ = 0, shown by the green circle.

Let us examine the LOV with ξ0 = −4 Earth radii, going from positive
ζ values towards negative ones. For large positive values of ζ, as already
mentioned, ϑ′ tends to ϑ, so the variation of ξ is small. Going towards
ζ = 0, the LOV crosses the hyperbola for ζ = ζ+. This corresponds to the
maximum of cosϑ′, i.e., to the minimum of sinϑ′ and thus to the maximum
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of ξ′. The values of ϑ′, ϕ′ and ξ′ are given by

cosϑ′+ =

√
c2 + ξ2

0 sin2 ϑ cosϑ+ c√
c2 + ξ2

0 sin2 ϑ+ c cosϑ
(5.10)

sinϑ′+ =
ξ0 sin2 ϑ√

c2 + ξ2
0 sin2 ϑ+ c cosϑ

sinϕ′+ =
ξ0 sinϑ sinϕ− c cosϕ√

c2 + ξ2
0 sin2 ϑ

(5.11)

cosϕ′+ =
ξ0 sinϑ cosϕ+ c sinϕ√

c2 + ξ2
0 sin2 ϑ

(5.12)

ξ′+ =

√
c2 + ξ2

0 sin2 ϑ+ c cosϑ

sinϑ
.

The next locus encountered by the ξ0 = −4 Earth radii LOV is cosϑ′ = cosϑ:
in this case, the local MOID is unchanged, ξ′ = ξ0. Finally, the LOV
encounters the other branch of the hyperbola, in ζ−. Here, the values of ϑ′,
ϕ′ and ξ′ are given by:

cosϑ′− =

√
c2 + ξ2

0 sin2 ϑ cosϑ− c√
c2 + ξ2

0 sin2 ϑ− c cosϑ
(5.13)

sinϑ′− =
ξ0 sin2 ϑ√

c2 + ξ2
0 sin2 ϑ− c cosϑ

sinϕ′− =
ξ0 sinϑ sinϕ− c cosϕ√

c2 + ξ2
0 sin2 ϑ

(5.14)

cosϕ′− =
ξ0 sinϑ cosϕ+ c sinϕ√

c2 + ξ2
0 sin2 ϑ

(5.15)

ξ′− =

√
c2 + ξ2

0 sin2 ϑ− c cosϑ

sinϑ
.

A noteworthy feature is that ϕ′+ = ϕ′− and we return on this in Section 5.5.
Coming now to the ξ0 = −2 Earth radii LOV, the crossings of the hy-

perbola and of the straight line are as before. However, this LOV crosses
also the green circle corresponding to cosϑ′ = 0: actually, one of these cross-
ings happens to take place at the border of the cross-section of the Earth.
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Anyway, at these two crossings we have

cosϑ′1,2 = 0, sinϑ′1,2 = 1

ξ′1,2 = ξ0 sinϑ.

5.4.1 Numerical check

To test the validity of the theoretical predictions about the variation of the
local MOID along the LOV, we proceeded as in Section 4 of Valsecchi et
al. (2018). That is, we integrated the equations of the circular restricted
three-body problem using the RA15 integrator (Everhart 1985) with initial
conditions corresponding to the 12 October 2017 encounter of 2012 TC4.

We found the pre-encounter values of ω corresponding to ξ0 equal to −2
and −4 Earth radii and then we integrated sets of initial conditions equally
spaced in ζ, thus reproducing the two LOVs of interest. Then we determined
the post-encounter values ξ′ and ζ ′, and plotted them in Figure 5.3, that has
to be compared with Figure 5.1. The theoretical behaviour of the LOV is
very well confirmed by the numerical integrations.

5.5 Rotation of U along the wire

The conservation of U implies that the pre-encounter and post-encounter
velocity vectors U and U′ span a sphere of radius U in the XY Z-space,
centred in the origin and on which the angles ϑ and ϕ define a system of
parallels and meridians. In fact, ϑ is a colatitude measured from the Y -axis
(the direction of motion of the planet) and ϕ is a longitude, counted from
the ZY -plane.

We now show that the post-encounter values of ϑ′ and ϕ′ accessible to a
small body encountering the planet “on the wire” lay on the circle resulting
from the intersection of the cone of aperture γmax(ξ0, c), centred in the
centre of the sphere, and the sphere itself. The angle γmax is the maximum
deflection for given ξ0, obtained for ζ = 0 from (Carusi et al. 1990):

cos γmax :=
ξ2

0 − c2

ξ2
0 + c2

.

On the U -sphere let us consider the meridian ϕC = ϕ+ = ϕ− and on it let
us consider point C, whose colatitude ϑC is halfway between ϑ′+ and ϑ′−, so
that

ϑC =
ϑ′+ + ϑ′−

2
.
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Figure 5.3. Same as Figure 5.1, but in this case the dots come from numerical
integrations in the circular restricted three-body problem.

From equations (5.10), (5.13), (5.11), (5.12) we can compute ϑC and ϕC as
a function of c, ϑ, ϕ, ξ0:

cosϑC =
ξ0 cosϑ√
ξ2

0 + c2
, sinϑC =

√
ξ2

0 sin2 ϑ+ c2√
ξ2

0 + c2

sinϕC =
ξ0 sinϑ sinϕ− c cosϕ√

c2 + ξ2
0 sin2 ϑ

, cosϕC =
ξ0 sinϑ cosϕ+ c sinϕ√

c2 + ξ2
0 sin2 ϑ

,

Thus, in the XY Z-frame the coordinates of C are

CX = U sinϑC sinϕ′± =
U(ξ0 sinϑ sinϕ− c cosϕ)√

ξ2
0 + c2

CY = U cosϑC =
Uξ0 cosϑ√
ξ2

0 + c2

CZ = U sinϑC cosϕ′± =
U(ξ0 sinϑ cosϕ+ c sinϕ)√

ξ2
0 + c2

.



5.5 Rotation of the velocity along the wire 133

On the other hand, the post-encounter values ϑ′, ϕ′ for a generic initial condi-
tion “on the wire”, of coordinates (ξ0, ζ), can be computed using equtions (5.4),
(5.5), (5.6), (5.7). The corresponding point on the U -sphere has coordinates

X = U sinϑ′ sinϕ′

Y = U cosϑ′

Z = U sinϑ′ cosϕ′

It is then a straightforward computation to show that the square of its
distance from C is

D2
C = (X − CX)2 + (Y − CY )2 + (Z − CZ)2 =

2U2
(√

ξ2
0 + c2 − ξ0

)
√
ξ2

0 + c2
.

i.e., it belongs to the circle on the U -sphere centred in C and of radius DC .
Thus the post-encounter values of ϑ′ and ϕ′ accessible to a small body

encountering the planet “on the wire” define the circle resulting from the
intersection of the cone of aperture γmax, centred in the centre of the sphere,
and the sphere itself. The pole of the spherical cap delimited by the circle is
the point C. It is clear that, the smaller becomes ξ0 relative to c, the larger
becomes the radius of the circle until, for ξ0 = 0, it becomes the great circle
corresponding to the ϕ-meridian. Moreover, for ξ0 6= 0 the circle is tangent
to the ϕ-meridian in the point of spherical coordinates (ϑ, ϕ).

Figure 5.4 helps to visualize the situation in the case of the already
mentioned recent encounter of 2012 TC4 with the Earth. It shows U in the
XY Z-frame and the sphere that is spanned by U′ for all possible values of
ξ and ζ. The red circle is the intersection of the sphere with the XY -plane
and the angles ϑ and ϕ are indicated. For the the real asteroid, ξ0 had a
negative value and γmax amounted to about 57 deg. Thus, we report in
green the circle spanned by U′ for that ξ0.

Figure 5.5 shows the situation for a value of ξ0 still negative but closer
to 0, for which γmax would amount to 90 deg. We are here plotting the
behaviour of U′ also for deflections that would imply a perigee of the real
asteroid smaller than the radius of the Earth, in order to give the overall
view of the geometry involved. Obviously, in a realistic computation, parts
of the green circle would be forbidden, due to the impact.

Finally, Figure 5.6 shows what happens when ξ0 changes sign. As already
mentioned, for ξ0 = 0 the green circle becomes a great circle. Afterwards,
the green circle starts to shrink on the other side, as ξ0 starts to increase
after having passed through 0. In the figure we plotted the green circle
corresponding to a value of γmax = 39 deg.
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Figure 5.4. The possible rotation of U′ for the 2017 encounter of 2012 TC4.

Figure 5.5. The possible rotation of U′ for the 2017 encounter of 2012 TC4, for a
value of ξ0 resulting in γmax = 90 deg.
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Figure 5.6. The possible rotation of U′ for the 2017 encounter of 2012 TC4, for a
positive value of ξ0 resulting in γmax = 39 deg.

5.6 Conclusions

We have discussed how a close encounter, in which the local MOID is well
determined, and the timing is somewhat uncertain, can be modelled with the
wire approximation, in which the LOV on the b-plane is described by ξ = ξ0

and ζ taking any value within the uncertainty range. Explicit expressions
can be given to describe the behaviour of the LOV after the encounter. In
particular, we are able to describe the variation of the local MOID as a
consequence of the encounter, that in some cases can be of the order of the
Earth radius, and thus have consequences for the possibility of impacts at
subsequent returns. Numerical integrations in the circular restricted three-
body problem confirm that the theoretical results on the variation of the
local MOID are satisfactorily accurate. Moreover, the theory allows us to
give the overall geometrical description of how the planetocentric velocity
vector is deflected at the encounter, as a function of the MOID of the points
along the LOV. In fact, for a LOV of given ξ0, the post-encounter values
of ϑ′ and ϕ′ give the circle resulting from the intersection of the cone of
aperture γmax = γmax(ξ0, c), centred in the centre of the sphere spanned by
U′, and the sphere itself.

Comparison of these results with those obtained in realistic situations for
asteroids possibly impacting the Earth, will be the subject of future work.





Chapter 6
Use of a semilinear method to
determine the impact corridor

6.1 The semilinear method

Let us consider the space RN of the orbital elements, a “target space” Y ⊆
R2, and a funtion F : RN → Y1. Let us call x and y the variables in the
spaces RN and Y, respectively. Let us assume to have a nominal solution
x∗ ∈ RN and let y∗ – F(x∗).

In the linear approximation, the confidence ellipsoid ZXlin(σ) in the space
of orbital elements (see Section 1.5) is mapped onto an elliptic disk in the
target space, which we denote by ZYlin(σ). It is defined by the inequality

(y − y∗)>CY (y − y∗) ≤ σ2

and is the image of ZXlin(σ) by the linear map DFx∗ . As it is known from
the theory of Gaussian probability distributions, the covariance matrices of
the variables X and Y are related by

C−1
Y – ΓY = DFx∗ΓXDF>x∗ .

The easily computable elliptic disks ZYlin(σ) are good approximations when-
ever the non-linearity of the function F is small. Unfortunately, this is not
the case when the orbits have to be propagated for a long time, and es-
pecially when close approaches take place. A good compromise between

1As usual, either N = 6, if we consider a set of six orbital elements (in whatever
coordinates), or N > 6 if some dynamical parameter is included (Milani et al. 2010,
Chapter 1).

137
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computational efficiency and accurate representation of non-linear effects is
obtained by the semilinear confidence boundaries in the target space, as
presented in Milani (1999) and Milani et al. (1999). The boundary ellipse
EY – ∂ZYlin(σ) is the image by the linear map DFx∗ of an ellipse EX(σ) in
the orbital elements space, which lies on the surface of the ellipsoid ZXlin(σ).
We define the semilinear confidence boundary K(σ) as the non-linear image
in the target space of the ellipse EX(σ), that is

K(σ) – F(EX(σ)).

By the Jordan curve theorem, the closed curve K(σ) is the boundary of
some subset Z(σ) in Y. We use Z(σ) as an approximation to F(ZXlin(σ)),
which is the set of all possible predictions on the target space compatible
with the observations.

To compute the semilinear confidence boundary K(σ) we can proceed
as follows. The rows of the Jacobian matrix DFx∗ span a 2-dimensional
subspace H in the orbital elements space RN , which can be decomposed as

RN = H⊕ G,

where G – H⊥ is a (N−2)-dimensional subspace2. Let us make the following
decomposition:

x− x∗ =

(
g − g∗

h− h∗

)
,

where h represents two coordinates in the space H and g represents N − 2
coordinates in the orthogonal space. In this coordinate system the normal
matrix CX can be decomposed as

CX =

(
Cgg Cgh

Chg Chh

)
.

The equation
g − g∗ = −C−1

ggCgh(h− h∗)

defines a 2-dimensional subspace in RN , containing the points of the confi-
dence ellipsoid ZXlin(σ) with tangent space orthogonal to H. This is called
regression subspace of g given h (Milani et al. 2010, Section 5.4). The space
H can be mapped to the regression subspace by means of the map

h− h∗ 7→
(

h− h∗

−C−1
ggCgh(h− h∗)

)
. (6.1)

2Without any further indication, we mean that the orthogonal subspace is taken with
respect to the Euclidean scalar product in RN .
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The linear map DFx∗ can be described as the composition of the orthogonal
projection on H and of an invertible linear map

A : H → Y.

Then A−1(KY
lin(σ)) is an ellipse in H, and the ellipse EX(σ) on the surface

of the ellipsoid is its image under the map defined by (6.1). Whatever the
method of representation of the region F(ZXlin(σ)), in the end we can only
explore it by computing a finite number of orbits. To increase the level of
resolution of this representation, however, the dimensionality of the space
being sampled matters. The region ZXlin(σ) isN -dimensional, and to increase
the resolution by a factor 10 the number of orbits grows by a factor 10N .
The semilinear confidence boundary K(σ) is a 1-dimensional curve, and
the resolving power increases linearly with the number of orbits computed.
In practice, even very complicated and strongly nonlinear examples can be
dealt with only a few tens to a few hundred orbit propagations.

6.2 Determination of the impact corridor

We propose an adaptation of the semilinear method for the prediction of
the impact corridor on ground for an asteroid that have a non-zero chance
of impacting the Earth in the future. The algorithm needs an impacting
orbit: in general the nominal solution does not impact the Earth, but still
IP > 0 and thus there exists a set of orbits leading to an impact and still
compatible with the observations. It suffices to suitably select one of these
orbits, the VI representative (Milani et al. 2000), and use it as a starting
point for the algorithm. Then the semilinear method provides the boundary
of the impact corridor, roughly corresponding to the portion of the initial
uncertainty region that leads to the impact. It is worth pointing out that
the semilinear method is an approximation, thus it works if the impact
probability values are high enough: in particular, we considered only impact
probability IP > 1 · 10−3.

Let x0 be the nominal orbit and Γ0 its covariance matrix, both provided
at some epoch t0. Since the nominal orbit may not impact, what matters is
the VI representative orbit. Let ximp be the orbit of the VI representative,
provided at the same initial epoch t0 as the nominal orbit. For a fixed
altitude h, with 0 ≤ h ≤ hmax – 100 km, the impact surface Sh is the
surface at height h above the Earth surface3 and its points are expressed
using geodetic longitude and latitude coordinates.

3Note that even if we assume an ellipsoidal model for the Earth surface, Sh is not an
ellipsoid for h > 0.
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Definition 6.1. Fix σ > 0 and h such that 0 ≤ h ≤ hmax. The impact
region boundary Bσ,h at altitude h and confidence level σ is the result of the
propagation of the intersection of the virtual impactor with the boundary
of the confidence ellipsoid ZXlin(σ), until the surface at altitude h above the
Earth is reached.

Definition 6.2. The impact corridor Cσ corresponding to the confidence
level σ is the union of the boundaries of the impact regions from altitude
hmax to the ground (h = 0). That is

Cσ –
⋃

0≤h≤hmax

Bσ,h.

Definition 6.3. Let W ⊆ R6 be a neighbourhood of ximp such that each
initial condition in W leads to an impact. The impact map

Fh : W → Sh

is given by the composition between the propagation from the initial condi-
tions to the impact time with the surface Sh and the projection on Sh.

The application of the semilinear method consists in following the steps
described in Section 6.1, which we briefly recall (see also Figure 6.1 for a
graphical representation).

(1) The confidenze region ZXlin(σ) is linearly propagated using the differen-
tial of Fh at ximp. This allows one to obtain the linear confidence region
ZYlin(σ) on the tangent space to Sh in Fh(ximp).

(2) The linear approximation given by (DFh)ximp is exploited to select a
curve EX(σ) on the boundary of the initial confidence ellipsoid Zlin(σ),
in fact an ellipse.

(3) A finite sampling of the ellipse EX(σ) is then non-linearly propagated
with Fh to obtain the semilinear confidence boundary at altitude h.

The points of this sample do not necessarily impact. For virtual impactors
with IP = 1 all the points of the curve EX(σ) lead to an impact. Thus to
obtain a satisfactory sample of the semilinear boundary it suffices to sample
the curve with few hundred points. On the contrary, for a virtual impactor
with 0 < IP < 1 so few points are usually not enough to obtain a clear
representation of the semilinear boundary, even with the possibility to obtain
no impacting points at all. Indeed the fraction of impacting points among
the sampling is roughly proportional to IP , thus impact probabilities of the
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order of 0.001 require about 100, 000 points to obtain a proper visualization
of the impact corridor. Such high number of orbits to propagate leads in
turn to very long computational times, in such a way that an optimization
procedure is needed to propagate the least possible number of non-impacting
orbits, which do not contribute to the semilinear boundary sample. Different
procedures can be implemented by exploiting the symmetry of the ellipse
EX(σ) with respect to the weak direction, i.e., the direction of the semimajor
axis. Indeed, if the stretching is high, we can also assume an approximated
symmetry of the two impacting segments with respect to the semimajor
axis. This assumption is not reliable for very low values of the stretching,
and some other expedient could be found in these cases.

ximp

ZXlin(σ)

ximp

Fh

Sh

Fh(ximp)

TFh(ximp)Sh

(DFh)ximp

ZYlin(σ)

EX(σ)

Figure 6.1. Graphical sketch of the application of the semilinear method described
above in the steps (1)-(3).

6.3 Results

We tested our method on two asteroids, namely 2008 TC3 and (99942)
Apophis. Asteroid 2008 TC3 impacted the Earth a few hours after its dis-
covery: it was the first ever predicted impact of a near-Earth object. The
locations of the meteorites recovered from the desert floor mark the as-
teroid’s actual ground track and provide a unique opportunity to validate
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impact location models such as the one presented in this chapter. We have
already presented the “Apophis crisis” of December 2004 (Section 1.4): it
is currently known that Apophis will not impact the Earth on 2029, but
we can consider the observational dataset which gave the 2029 virtual im-
pactor and compare the related impact corridor with the one computed by
an independent system and with a different method, namely the JPL impact
corridor computed with a Monte Carlo simulation. In both cases we obtain
a remarkable agreement between the two results.

The semilinear method succeeds in providing the boundary of the impact
region on ground, with a comparatively smaller number of propagations with
respect to Monte Carlo approaches. Indeed it samples a 1-dimensional curve
instead of a region in the 6-dimensional orbital elements space.

Concerning the graphical representation of the impact corridor, whatever
the method that computes the impact locations, the output is likely to be
a data file with geocentric coordinates representing points on the Earth
surface. It is then needed to plot them on the terrestrial globe, and we
exploited the already existing software Google Earth/Maps for the figures
of this chapter.

6.3.1 Evolution of the impact corridor for 2008 TC3

As already presented in Section 2.9.2, 2008 TC3 is a small asteroid that
impacted the Earth on 2008 October 7. When it was first detected (about
20 h before impact), 2008 TC3 was still farther away than the Moon. Once
it was recognized and announced as an impactor, it received considerable
attention from the observers in such a way that now we have available an
observational dataset composed by nearly 900 observations. Furthermore,
the locations of the many meteorites recovered from the desert floor mark the
asteroid’s actual ground track and provide a unique opportunity to validate
impact location models such as the one presented in this chapter.

First we predicted the impact regions of 2008 TC3 using reduced obser-
vational datasets, simulating the computations that would have been done
immediately after the impact risk announcement. For each altitude h we
show with different colours three different impact regions, namely those cor-
responding to the confidence levels σ = 1, σ = 3 and σ = 5. Figure 6.2,
6.3 and 6.4 show the impact regions for altitudes 0 and 100 km, computed
using 12, 16, and 26 observations, respectively. The blue line is the nominal
ground track. In all 2008 TC3 images the locations of the recovered mete-
orites reported in Shaddad et al. (2010) are shown, with larger and darker
circles for larger masses.
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Figure 6.2. Prediction of the impact region of 2008 TC3 using the first 12 observations
(almost 18 hours before impact).

Figure 6.3. Prediction of the impact region of 2008 TC3 using the first 16 observations
(about 12 hours before impact).

Figure 6.4. Prediction of the impact region of 2008 TC3 using the first 26 observations
(about 11 hours and a half before impact).
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Finally, we analysed the results when using the full dataset of 883 obser-
vations available before impact. This case is linear and the orbit is over-
determined, so that the 1-σ uncertainty region is very small, ' 0.05×0.5 km
at impact on ground. In Figure 6.5 we show the 2008 TC3 impact regions
on ground and for altitudes corresponding to 37 km, 65.4 km and 100 km.
Figure 6.6 is just an enlargement of Figure 6.5 between h = 37 km and
h = 0 km. Detections of the actual atmospheric impact event suggested
an atmospheric entry at 65.4 km, followed by an airburst explosion at an
altitude of 37 km, with an energy equivalent to about one kiloton of TNT
explosives. This explain why both Figure 6.6 and Figure 6.5 also show the
regions at altitudes 37 km and 65.4 km, in addition to those on the ground
and at h = 100 km.

The JPL team provides a precise estimate of the trajectory of 2008 TC3

and its impact ground track in Farnocchia et al. (2017b). They perform the
orbit determination after a careful analysis of the astrometric dataset and in
the selection of the weights to assign to each observation. From one side they
accounted for the expected quality of some observers, and for the other side
they deweighted the observations toward the end of the arc since they show
a gradually poorer quality. Moreover, they employed a high-precision force
model, containing the Newtonian terms for the Sun, the planets, Pluto, the
Moon, and the most 16 massive main-belt bodies, as well as the relativisic
terms for eight planets and the quadrupole term of the Earth gravity field.
The outcome of the impact location prediction on ground has been compared
to that obtained by our method, starting from the same nominal orbit and
using the same force model. The differences between the two predictions are
as large as 3 m, suggesting that the propagation error is at the few meter
level and showing a very good agreement between the two methods.

6.3.2 Apophis

We already presented the story of Apophis in Section 1.4. A few months after
its discovery, Apophis was recognized as a potentially hazardous asteroid,
with a peak impact probability of ' 2.7% in April 2029, as computed by
both Sentry and NEODyS (see Section 1.4 for a more detailed report). On
2004 December 27 the Spacewatch survey reported precovery observations
that ruled out any impact possibility for 2029. However, there will be a
historically close approach with the Earth, estimated to be a 1 in 800 year
event on average, for an object of that size.

We recovered the situation for Apophis corresponding to 2004 Decem-
ber 274: this set corresponds to the situation just before the availability of

4The set of observations taken is the one of MPEC 2004-Y69.
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Figure 6.5. Prediction of the impact region of 2008 TC3 with 883 observations.

Figure 6.6. Enlargement of the previuos plot between h = 37 km and h = 0 km.

the precovery observations which ruled out the 2029 imipact chance. We
computed a full least squares solution by using the debiasing and weighting
scheme provided in Farnocchia et al. (2015b) and, to ensure a more com-
plete force model, we also include the contributions coming from 16 massive
main belt bodies and Pluto. Furthermore we included the effect of Earth
oblateness in the vicinity of Earth, i.e., when the distance is less than 0.1 au.
Starting from this nominal solution, we computed the impact monitoring in
Equinoctial elements and by using the uniform-in-probability sampling of
the LOV, as presented in Chapter 4. This computation results in a virtual
impactor with impact on 2029 April 13 and with probability 2.42%. We use
the corresponding VI representative to apply our method, and the result
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Figure 6.7. Top panel. Semilinear prediction of the 2029 impact regions of Apophis,
using the observations available on 2004 December 27. Bottom panel. Monte Carlo pre-
diction of the 2029 impact locations of Apophis, using the same observational dataset
of the above figure (JPL, private communication).

is shown in Figure 6.7 (top panel), whereas the bottom panel shows the
impact corridor computed with the same observational dataset by the JPL
team using a Monte Carlo method5.

5Private communication by Steven R. Chesley.



Appendix A
Target Planes

Hereinafter we describe the transformation from the Modified Target Plane
(MTP) reference system to the Target Plane (TP) reference system (Tommei
2006). This transformation uses three maps:

(x,y) 7→ (x′,y′) 7→ (xTP ,yTP ) 7→ (x,y).

The first map is the rotation bringing the MTP to coincide with the TP.
The second is the scaling mapping the Earth cross section on the MTP to
that on the TP (they have different radii due to the gravitational focusing to
take into account for the TP). The third is a basis change, and leads to the
definition of a suitable set of Öpik elements. We also provide the derivatives
of all this maps.

The set of the so-called modified Öpik elements is defined through a
further map:

(x,yTP ) 7→ (U,α, δ, ξ, ζ, η),

and it is very important, being the coordinate set used in the computations
performed by clomon-2.

A.1 Angular momentum

Let x = (x1, x2, x3), y = (y1, y2, y3) be respectively the position and velocity
of the asteroid at the MTP crossing. Since J = x × y, the components of
the angular momentum J = (J1, J2, J3) are

Jh =

3∑
i=1

εijhxiyj .

147
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In the previous equation we have used the Levi-Civita symbol

εijk =


1 if (i j k) is an even permutation
−1 if (i j k) is an odd permutation
0 if two indexes have the same value

We shall assume that x · y = 0, so that, if ‖x‖ = d and ‖y‖ = V , we have
‖J‖ = dV .

A.2 The first transformation

The first map
(x,y) 7→ (x′,y′)

is a rotation by γ
2 around the normalized angular momentum vector j =

(j1, j2, j3). We shall write x′ = (x′1, x
′
2, x
′
3) and y′ = (y′1, y

′
2, y
′
3) for the

components of the image of this map.
Let us define

HRoy –

√
j2
1 + j2

2 .

If I and Ω are the inclination and the longitude of pericentre of the asteroid,
we have

cos I = j3
sin I = HRoy

cos Ω = − j2
HRoy

sin Ω =
j1

HRoy

cos
γ

2
=

√
1− sin2 γ

2
.

We define the rotation matrices

R
(3)
Ω =

 cos Ω − sin Ω 0
sin Ω cos Ω 0
0 0 1

 R
(1)
I =

 1 0 0
0 cos I − sin I
0 sin I cos I



R
(3)
γ/2 =

 cos γ2 − sin γ
2 0

sin γ
2 cos γ2 0

0 0 1

 ,

and
R– R

(3)
Ω ·R

(1)
I ·R

(3)
−γ/2 ·R

(1)
−I ·R

(3)
−Ω.

The rotation R
(1)
−I ·R

(3)
−Ω brings the x3 axis to coincide with the direction of

ĵ. The first map can be written as

(x′,y′) = (Rx,Ry).
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We shall now compute the Jacobian matrix of the transformation: the
rotation matrix R depends on γ and on the direction of the angular momen-
tum j. Setting s– sin γ

2 we have

∂x′i
∂xj

= Ri,j +
3∑

k=1

∂Ri,k
∂s

∂s

∂xj
xk +

3∑
h=1

3∑
k=1

∂Ri,k
∂jh

∂jh
∂xj

xk

∂x′i
∂yj

= Ri,j +

3∑
k=1

∂Ri,k
∂s

∂s

∂yj
xk +

3∑
h=1

3∑
k=1

∂Ri,k
∂jh

∂jh
∂yj

xk

∂y′i
∂xj

= Ri,j +
3∑

k=1

∂Ri,k
∂s

∂s

∂xj
yk +

3∑
h=1

3∑
k=1

∂Ri,k
∂jh

∂jh
∂xj

yk

∂y′i
∂yj

= Ri,j +

3∑
k=1

∂Ri,k
∂s

∂s

∂yj
yk +

3∑
h=1

3∑
k=1

∂Ri,k
∂jh

∂jh
∂yj

yk

Derivatives with respect to s

By using the conservation of angular momentum, we obtain

s =
Gm

V 2d−Gm.

Setting x̂ – x
d and ŷ –

y
V we have

∂s

∂d
= − V 2

Gm
s2,

∂s

∂x
=
∂s

∂d
x̂,

∂s

∂V
= −2V d

Gm
s2,

∂s

∂y
=

∂s

∂V
ŷ.

Moreover

∂R
∂s

= R
(3)
Ω ·R

(1)
I ·

∂

∂s
R

(3)
−γ/2 ·R

(1)
−I ·R

(3)
−Ω

where

∂

∂s
R

(3)
−γ/2 =

 − tan(γ/2) 1 0
−1 − tan(γ/2) 0

0 0 0

 .
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Derivatives with respect to j

Now we give the expression for the derivatives of the rotation R with respect
to the normalized angular momentum j.

∂R
∂jk

=
∂

∂jk

[
R

(3)
Ω

]
·R(1)

I ·R
(3)
−γ/2 ·R

(1)
−I ·R

(3)
−Ω +

+ R
(3)
Ω ·

∂

∂jk

[
R

(1)
I

]
·R(3)
−γ/2 ·R

(1)
−I ·R

(3)
−Ω +

+ R
(3)
Ω ·R

(1)
I ·R

(3)
−γ/2 ·

∂

∂jk

[
R

(1)
−I

]
·R(3)
−Ω +

+ R
(3)
Ω ·R

(1)
I ·R

(3)
−γ/2 ·R

(1)
−I ·

∂

∂jk

[
R

(3)
−Ω

]
where

∂

∂jk
R

(3)
Ω =


− δ2,k
HRoy

+ j2
H2
Roy

∂HRoy
∂jk

− δ1,k
HRoy

+ j1
H2
Roy

∂HRoy
∂jk

0

δ1,k
HRoy

− j1
H2
Roy

∂HRoy
∂jk

− δ2,k
HRoy

+ j2
H2
Roy

∂HRoy
∂jk

0

0 0 0


∂

∂jk
R

(1)
I =

 0 0 0

0 δ3,k −∂HRoy
∂jk

0
∂HRoy
∂jk

δ3,k


∂

∂jk
R

(1)
−I =

 0 0 0

0 δ3,k
∂HRoy
∂jk

0 −∂HRoy
∂jk

δ3,k



∂

∂jk
R

(3)
−Ω =


− δ2,k
HRoy

+ j2
H2
Roy

∂HRoy
∂jk

δ1,k
HRoy

− j1
H2
Roy

∂HRoy
∂jk

0

− δ1,k
HRoy

+ j1
H2
Roy

∂HRoy
∂jk

− δ2,k
HRoy

+ j2
H2
Roy

∂HRoy
∂jk

0

0 0 0


In the previous formulas we have used the Kronecker delta

δhk =

{
1 if h = k
0 if h 6= k

and the derivatives of HRoy with respect to the normalized angular momen-
tum components

∂HRoy

∂j1
=

j1
HRoy

,
∂HRoy

∂j2
=

j2
HRoy

,
∂HRoy

∂j3
= 0.
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Indicating with ε an estimate of the rounding off, if HRoy < ε we assume
Ω = 0 and R(3)

Ω = I. Then ∂
∂jk

R
(3)
Ω 6= 0 but has to be computed in a non

singular way.
We also have

∂jh
∂xj

=
∂

∂xj

(
Jh
V d

)
=

1

V d

3∑
i=1

εjihyi −
Jhxj
V d3

=
1

V d

3∑
i=1

εjihyi −
jhxj
d2

,

∂jh
∂yj

=
∂

∂jj

(
Jh
V d

)
=

1

V d

3∑
i=1

εijhxi −
Jhyj
dV 3

=
1

V d

3∑
i=1

εijhxi −
jhyj
V 2

.

A.3 The second transformation

The second map is

(x′,y′)→ (xTP ,yTP ) =

(
βx′,

1

β
y′
)

where

β –
b

d
=

(
V 2d

V 2d− 2Gm

)1/2

.

This map is the scaling of the distance from the MTP to the TP: a point
having a unit distance from the Earth centre on the MTP corresponds to a
point with distance b from the Earth centre on the TP.

The Jacobian matrix of this second transformation is given by the fol-
lowing derivatives:

∂xTPi
∂x′j

= βδij +
∂β

∂d

x′j
d
x′i,

∂xTPi
∂y′j

=
∂β

∂V

y′j
V
x′i

∂yTPi
∂x′j

= − 1

β2

∂β

∂d

x′j
d
y′i,

∂yTPi
∂y′j

=
δij
β
− 1

β2

∂β

∂V

y′j
V
y′i

and
∂β

∂d
= −Gmβ

3

V 2d2
,

∂β

∂V
= −2Gmβ3

V 3d
.

A.4 The third transformation

The third map is a rotation to line up the velocity vector with the second
axis of the reference system. The rotation matrix S has rows {Si}i=1,2,3

such that

S1 –
yTP

U
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is the velocity direction. The second direction is selected as e3 = (0, 0, 1),
and then the Graham-Schmidt algorithm is used:

w = e3 − (e3 · S1)S1

S3 –
w

‖w‖
S2 – S1 × S3.

Thus, setting yTP = (u1, u2, u3), the matrix S is

S =


u1
U

u2
U

u3
U

u2√
u12+u22

− u1√
u12+u22

0

− u1u3

U
√
u12+u22

− u2u3

U
√
u12+u22

u12+u22

U
√
u12+u22

 ,

where U =
√
u2

1 + u2
2 + u2

3. To compute the partial derivatives, we need to
take into account that

∂S
∂xTP

= 0,

and therefore
∂xi

∂xTPj
= Sij ,

∂xi

∂yTPj
=

3∑
k=1

∂Sik
∂yTPj

xTPk

∂yi
∂xTPj

= 0,
∂yi
∂yTPj

= Sij +
3∑

k=1

∂Sik
∂yTPj

yTPk

The derivatives of S with respect to (u1, u2, u3) are needed in the previous
partials. They are

∂S1

∂(u1, u2, u3)
=

1

U3

 u2
2 + u2

3 −u1u2 −u1u3

−u1u2 u2
1 + u2

3 −u2u3

−u1u3 −u2u3 u2
1 + u2

2


∂S2

∂(u1, u2, u3)
=

1

(u2
1 + u2

2)3/2

 −u1u2 u2
1 0

−u2
2 u1u2 0

0 0 0


∂S3

∂(u1, u2, u3)
=

1

U3(u2
1 + u2

2)3/2
M3

where

M3 =

 u3[(u
2
1 − U

2)(u2
1 + u2

2) + U2u2
1] u1u2u3(u

2
1 + u2

2 + U2) u1(u
2
3 − U

2)(u2
1 + u2

2)

u1u2u3(u
2
1 + u2

2 + U2) u3[(u
2
2 − U

2)(u2
1 + u2

2) + U2u2
2] u2(u

2
3 − U

2)(u2
1 + u2

2)

u1u
2
3(u

2
1 + u2

2) u2u
2
3(u

2
1 + u2

2) −u3(u
2
1 + u2

2)
2

 .
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A.5 Modified Öpik elements

The modified Öpik elements are defined as follows. The first three elements,
namely (U,α, δ) ∈ R+×S1×[0, π], are polar coordinates of yTP . In particular

U = ‖yTP ‖

is the unperturbed planetocentric velocity, and the two angles are such that
u1 = U cos δ cosα
u2 = U cos δ sinα
u3 = U sin δ

The three coordinates (ξ, ζ, η) are x, just in a different order for historical
reasons: 

ξ – x2

ζ – x3

η – x1

Concerning the partial of this last map, we can simply obtain

∂U

∂xTP
= 0,

∂U

∂yTP
=

yTP

‖yTP ‖ .

By writing α = arctan u2
u1

and δ = arcsin u3
U we compute

∂α

∂xTP
= 0,

∂δ

∂xTP
= 0

and
∂α

∂u1
= − u2

u2
1 + u2

2

,
∂α

∂u2
= − u1

u2
1 + u2

2

,
∂α

∂u3
= 0,

∂δ

∂u1
= − u1u3

U2
√
u2

1 + u2
2

,
∂δ

∂u2
= − u2u2

U2
√
u2

1 + u2
2

,
∂δ

∂u3
=

√
u2

1 + u2
2

U2
.

Moreover, since the modified Öpik elements are the components of SxTP ,
we obtain

∂ξ

∂xTP
= S2,

∂ξ

∂yTPj
=

3∑
k=1

∂S2k

∂yTPj
xTPk , j = 1, 2, 3

and
∂ζ

∂xTP
= S3,

∂ζ

∂yTPj
=

3∑
k=1

∂S3k

∂yTPj
xTPk , j = 1, 2, 3.





Appendix B
The Farey sequence

B.1 Arithmetical functions

Definition B.1. An arithmetical function is a function f : N∗ → C, where
N∗ is the set of non-zero natural numbers.

The set of the arithmetical functions can be endowed with two natural
operations, the sum and the scalar multiplication (over C).

Definition B.2. Let f and g be two arithmetical functions. Their Dirichlet
convolution is the arithmetical function f ∗ g defined by

(f ∗ g)(n) –
∑
d|n

f(d)g
(n
d

)
.

With these three operations, the set of the arithmetical functions turns
out to be a commutative algebra. The identity function for the convolution
is the arithmetical function

e(n) –

{
1 if n = 1
0 if n > 1

.

To fix the notation, we also define

1(n) – 1 for all n ∈ N∗

and
i(n) – n for all n ∈ N∗.
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B.1.1 Euler totient function

Definition B.3. For each integer n ≥ 1 we define ϕ(n) as the number of
positive integers ≤ n and relatively prime with n. The function ϕ is called
the Euler totient function.

Three basic properties hold for the function ϕ. Their proof can be found
in Hardy et al. (2008).

(1) ϕ is a multiplicative function, i.e. ϕ(nm) = ϕ(n)ϕ(m) for all integers n
and m such that (n,m) = 1.

(2) If p is prime, then ϕ(p) = p− 1.

(3) If p is prime, then ϕ(pn) = pn − pn−1 = pn
(

1− 1
p

)
.

Theorem B.4. For all n > 1

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Proof. From the fundamental theorem of arithmetic we can write n =
∏
p|n p

ap

in a unique way. From the previous properties

ϕ(n) = ϕ

∏
p|n

pap

 =
∏
p|n

ϕ (pap) =
∏
p|n

(
pap − pap−1

)
=

=
∏
p|n

pap
(

1− 1

p

)
=
∏
p|n

pap
∏
p|n

(
1− 1

p

)
= n

∏
p|n

(
1− 1

p

)
.

B.1.2 The Möbius function

Definition B.5. The Möbius function is the arithmetical function defined
by

µ(n) –


1 if n = 1
0 if pe | n for some prime p and e > 1
(−1)r if n is the product of r distinct primes

Note that µ(n) = 0 if and only if n has a square factor > 1. As well as
the totient function, µ is a multiplicative function, as directly follows from
the definition.
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Proposition B.6. For every n ≥ 1

∑
d|n

µ(d) =

{
1 se n = 1
0 se n > 1

,

that is 1 ∗ µ = e.

Proof. The statement is clearly true for n = 1. Assume, then, that n > 1
and write n =

∏m
i=1 p

ai
i . In the sum

∑
d|n µ(d), the only non-zero terms

come from d = 1 and from those divisors of n which are products of distinct
primes. Thus

µ(n) = µ(1) +
∑
i

µ(pi) +
∑
i<j

µ(pipj) + . . .+ µ(p1p2 · . . . · pm) =

=
m∑
i=0

(−1)i
(
m

i

)
= (1− 1)m = 0.

Proposition B.7. For each n ≥ 1

ϕ(n) =
∑
d|n

µ(d)
n

d
,

that is ϕ = i ∗ µ.

Proof. From Proposition B.6 we can write

ϕ(n) =

n∑
k=1

(k,n)=1

1 =

n∑
k=1

∑
d|(k,n)

µ(d) =

n∑
k=1

∑
d|k
d|n

µ(d).

Let d be a divisor of n. The two conditions on k can be written as k = qd
and 1 ≤ q ≤ n

d , thus

ϕ(n) =
∑
d|n

∑
1≤q≤n

d

µ(d) =
∑
d|n

µ(d)
∑

1≤q≤n
d

1 =
∑
d|n

µ(d)
n

d
.



158 B. The Farey sequence

B.2 Dirichlet series

Definition B.8. A Dirichlet series is a series
∞∑
n=1

f(n)

ns
, (B.1)

where f is an arithmetical function and s ∈ C. This series is also called the
generating function of f .

The following are two classical results. More details on Dirichlet series
and generating functions can be found in Apostol (1976, Chapter 11).

Theorem B.9. Suppose the series
∞∑
n=1

∣∣∣∣f(n)

ns

∣∣∣∣
does not converge for all s or diverge for all s. Then there exists a real
number σ such that the series (B.1) converges absolutely for Re(s) > σ and
does not converge absolutely for Re(s) < σ.

Proof. First note that if Re(s) > σ0, then∣∣∣∣f(n)

ns

∣∣∣∣ ≤ |f(n)|
nσ0

.

Therefore, if a Dirichlet series converges absolutely for a certain s0 with
Re(s0) = σ0, then it is absolutely convergent for all s with Re(s) ≥ σ0, by
the comparison test.
Let D be the set of all real σ such that

∑∞
n=1

∣∣∣f(n)
ns

∣∣∣ diverges. Thus D is
not empty because the series does not converge for all s, and D is bounded
above because the series does not diverge for all s. Therefore there exists
σ = supD. If σ < σ then σ ∈ D because otherwise σ would be an upper
bound for D smaller than the least upper bound σ. If σ > σ then σ /∈ D
since σ is an upper bound for D.

In case the series (B.1) converges absolutely for all s we define σ = −∞,
whereas if the series does not converge absolutely for all s we define σ = +∞.
In this way, σ is called the abscissa of absolute convergence of the series.

Theorem B.10. Let F (s) and G(s) be the two Dirichlet series

F (s) =
∞∑
n=1

f(n)

ns
and G(s) =

∞∑
n=1

g(n)

ns
,
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and let σ1 and σ2 the two abscissas of absolutely convergence. Then, in the
half-plane where both series converge absolutely we have

F (s)G(s) =

∞∑
n=1

(f ∗ g)(n)

ns
.

Proof. The half-plane where the two series are absolutely convergent is
Re(s) > max(σ1, σ2). For any such s, we have

F (s)G(s) =

∞∑
n=1

f(n)

ns

∞∑
m=1

g(m)

ms
=

∞∑
n=1

∞∑
m=1

f(n)g(m)

(nm)s
.

Because of absolute convergence, we can multiply these series together and
rearrange the terms in any way we please without altering the sum. Collect
together those terms for which mn is constant, say mn = k. Thus

F (s)G(s) =

∞∑
k=1

1

ks

∑
mn=k

f(n)g(m) =

∞∑
k=1

(f ∗ g)(k)

ks
.

Definition B.11. The Riemann zeta function is

ζ(s) –

∞∑
n=1

1

ns
.

The Riemann zeta function is absolutely convergent on the half-plane Re(s) >
1, and when s = 1 the series diverges. Therefore σ = 1. Furthermore, the
zeta function has an analytic continuation in the entire complex plane, ex-
cept for a simple pole at s = 1 with residue 1 Apostol (1976, Chapter 12).

Theorem B.12. The generating function of the Möbius function µ is
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
.

Proof. From Proposition B.6 we know that 1 ∗ µ = e. Note that the gener-
ating function of the arithmetical function 1 is the Riemann zeta function
ζ(s), and that the generating function of e is 1. The proof now follows from
Theorem B.10.

Theorem B.13. For x > 1 we have∑
n≤x

ϕ(n) =
1

2ζ(2)
x2 +O(x log x).



160 B. The Farey sequence

Proof. We start from the relation

ϕ(n) =
∑
d|n

µ(d)
n

d

from Proposition B.7, and obtain∑
n≤x

ϕ(n) =
∑
n≤x

∑
qd=n

q · µ(d) =
∑
q,d
qd≤x

q · µ(d) =
∑
d≤x

µ(d)
∑
q≤x

d

q =

=
∑
d≤x

µ(d) · 1

2

[x
d

] ([x
d

]
+ 1
)

=

=
1

2

∑
d≤x

µ(d)

(
x2

d2
+O

(x
d

))
=

=
x2

2

∑
d≤x

µ(d)

d2
+O

x∑
d≤x

1

d

 =

=
x2

2

( ∞∑
d=1

µ(d)

d2
−
∑
d>x

µ(d)

d2

)
+O(x log x),

where we have also used the well known result
∑

d≤x
1
d = log x + O(1).

Concerning the series remainder, we have∑
d>x

µ(d)

d2
≤
∫ ∞

[x]

du

u2
= O

(
1

x

)
.

The proof ends using this estimate and Theorem B.12.

B.3 The Farey sequence

Definition B.14. The Farey sequence Fn of order n is the ascending se-
quence of irreducible fractions between 0 and 1 whose denominators do not
exceed n.

Thus h
k ∈ Fn if and only if 0 ≤ h ≤ k ≤ n and (h, k) = 1. The numbers 0

and 1 are included in the form 0
1 and 1

1 .

Example B.15. For n = 5, the elements of F5 are the following:

0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1
.
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By definition Fn−1 ⊆ Fn for all n > 1, and the smallest Farey sequence
is that of order n = 1

F1 =

{
0

1
,
1

0

}
.

Proposition B.16. The length of the Farey sequence of order n is

|Fn| = 1 +
n∑
k=1

ϕ(k).

Proof. To create Fn from Fn−1, we have just to add to Fn−1 the irreducible
fractions with denominator n. The number of such fraction is exactly ϕ(n),
since this function counts the integers between 1 and n which are relatively
prime to n. Thus for all n > 1

|Fn| = |Fn−1|+ ϕ(n).

Of course the length of the Farey sequence of order 1 is |F1| = 2. As a
consequence, the length of the Farey sequence of order n is given by

|Fn| = 2 +
n∑
k=2

ϕ(k) = 1 +
n∑
k=1

ϕ(k).

Theorem B.17. As n→ +∞

|Fn| ∼
3

π2
n2.

Proof. Start from Proposition B.16 and use Theorem B.13.

Corollary B.18. As n→ +∞
n∑
k=1

|Fk| ∼
1

π2
n3.

Proof. The sequence bn = n3 is increasing and limn→+∞ bn = +∞. The
thesis follows from Theorem B.17 and from the Stoltz-Cesaro theorem since∑n+1

k=1 |Fk| −
∑n

k=1 |Fk|
(n+ 1)3 − n3

=
|Fn+1|

3n2 + 3n+ 1
=
|Fn+1|

(n+ 1)2

(n+ 1)2

3n2 + 3n+ 1
→ 1

π2
.
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Analogous results hold in case we consider the irreducible fractions be-
tween any two integers r and s > r and with denominator not exceeding n.
Let us denote that set of fraction with Fr,sn .

Lemma B.19. Each unit interval [`, ` + 1] contains exactly as many ir-
reducible fractions with denominator not exceeding n as [0, 1]. That is,
|Fn| = |F `,`+1

n |.

Proof. It suffices to prove that there exists a bijection between Fn and
F `,`+1
n . If h

k ∈ Fn, then consider h
k + `: it belongs to [`, ` + 1] and it is

irreducible since (h, h+k`) = 1 (otherwise (h, k) > 1). Thus h
k + ` ∈ F `,`+1

n .
Analogously, if hk ∈ F

`,`+1
n then h

k−` belongs to [0, 1] and it is irreducible.

Theorem B.20. For s > r integers, as n→ +∞

|Fr,sn | ∼
3(s− r)
π2

n2 and
n∑
k=1

|Fr,sk | ∼
s− r
π2

n3.

Proof. it is possible to write [r, s] as the union of adjacent unit intervals as
[r, s] =

⋃s−r
i=0 [r + i − 1, r + i]. As a consequence and also by applying the

above lemma we get

|Fr,sn | = (s− r)|Fn| − (s− r − 1).

The thesis follows from Theorem B.17.



Appendix C
Recap of manifolds and integration

In this appendix we recall some basic definitions about manifolds and inte-
gration on manifolds. We basically follow Acquistapace (2018).

Definition C.1. A subset V of RN is a regular r-dimensional manifold
if for all x0 ∈ V there exist a neighbourhood U of x0 in RN and a map
F : U → RN−r of class Ck, k ≥ 1 such that

(i) DF(x) has rank N − r (is full rank) for every x ∈ U :

(ii) V ∩ U = {x ∈ U : F(x) = 0}.

Thus r-dimensional manifolds are those subsets that, locally, are the zero
loci of functions of class at least C1 with Jacobian matrix that is full rank.

Theorem C.2. Let V be a subset of RN . The set V is a regular r-dimensional
manifold in RN if and only if for all x0 ∈ V there exist an open neighbour-
hood U of x0 in RN , an open set A ⊆ Rr and a function h : A → RN−r of
class Ck, k ≥ 1, such that V ∩ U is the graph of the function h, that is

V ∩ U = {(y, z) ∈ RN : y ∈ A, z = h(y)}.

Theorem C.3. Let V be a subset of RN . The set V is a regular r-dimensional
manifold in RN if and only if for all x0 ∈ V there exist an open neighbour-
hood U of x0 in RN , an open set A ⊆ Rr and a homeomorphism G : A→ RN
of class Ck, k ≥ 1, such that

(i) DG(u) has rank r (is full rank) for every u ∈ A:

(ii) V ∩ U = G(A).
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In the hypoteses of Theorem C.3, the map G is a local parametrization
of V . Furthermore, note that (ii) implies that G(A) is open in V . The
equivalent definition of manifold stated in Theorem C.3 is usually the more
convenient. In what follows we always consider global parametrizations that
are not necessarily homeomorphisms. In particular, we give a set V = G(T ),
where T is a subset of Rr such that there exists an open set A ⊆ Rr for
which A ⊆ T ⊆ A, and G : T → RN is a map of class Ck, k ≥ 1, with
Jacobian matrix DG(t) that is full rank for each t ∈ A. The set V is called
r-dimensional manifold.

Let {e1, . . . , eN} be the canonical base of RN and consider the r vectors
of Rn

DG(t)ei =
∂G

∂ti
(t), i = 1, . . . , r,

where t ∈ A. The quantity

I(t) :=

∣∣∣∣∂G

∂t1
(t) ∧ · · · ∧ ∂G

∂tr
(t)

∣∣∣∣
N,r

represents the r-dimensional volume of the parallelepiped generated by the
vectors ∂G

∂t1
(t), . . . , ∂G

∂tr (t)1. It is strictly positive in each t ∈ A since DG(t)
is full rank in A.

Definition C.4. Let V = G(T ) ⊆ RN be an r-dimensional manifold. The
r-dimensional measure of V is the non-negative quantity (possibly infinite)

vr(V ) :=

∫
T

∣∣∣∣∂G

∂t1
(t) ∧ · · · ∧ ∂G

∂tr
(t)

∣∣∣∣
N,r

dt

Definition C.5. Let V = G(T ) ⊆ RN be an r-dimensional manifold and
let f be a continuous function defined over an open set of Rn that contains
V . If the function (f ◦G) · I is Lebesgue-integrable on T , then we define
the integral of f on V with respect to the measure vr to be∫

V
f dvr :=

∫
T
f(G(t))I(t) dt =

=

∫
T
f(G(t))

∣∣∣∣∂G

∂t1
(t) ∧ · · · ∧ ∂G

∂tr
(t)

∣∣∣∣
N,r

dt.

1In the definition of I, | · |N,r is the norm induced by the standard product on the
space RNr –

((
RN

)∗)∗
r
of the alternating r-linear functions on

((
RN

)∗)r.
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From the definition of exterior product and from results in calculus, we
have that

I(t) =

∣∣∣∣∂G

∂t1
(t) ∧ · · · ∧ ∂G

∂tr
(t)

∣∣∣∣
N,r

=

√
det

{〈
∂G

∂ti
(t),

∂G

∂tj
(t)

〉
N

}
=

=
√

det [DG(t)> ·DG(t)], (C.1)

that is the square root of the Gramian of the columns of DG(t). The
differentiable form dvr is referred to as the volume form on V .





Appendix D
Orbit determination: mathematical
theory

D.1 The problem

Definition D.1. Let f : Rp × R × Rp′ → Rp be a function obeying some
regularity requirement. The equation of motion is an ordinary differential
equation

dy

dt
= f(y, t,µ),

where y is the state vector, t is the time and µ are the dynamical parameters.
Let t0 be the initial time, so that y0 = y(t0) are the initial conditions.

We want to solve the Cauchy problem formed by the previous differen-
tial equation and the initial conditions. The existence and uniqueness of a
solution in a neighbourhood of (y0, t0) is guaranteed if f is continuous and
locally Lispchitz in an open set contained in Rp × R.

Definition D.2. An orbit is a solution of the equation of motion with
assigned initial conditions.

All the orbits together form the general solution y = y(t,y0,µ), also
known as integral flow when considered as a mapping from the initial con-
ditions (and dynamical parameters) to the current state at time t:

y(t) = Φt
t0(y0,µ).

Let ν ∈ Rp′′ be a vector of kinematical parameters. The observation function
is a function R(y, t,ν), assumed to be differentiable.
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Definition D.3. The composition of the general solution with the observa-
tion function is the prediction function r(t) := R(y(t), t,ν).

Remark D.4. The observation function can depend also upon the index i,
the most common case being the use of a 2-dimensional observation function
like (right ascension, declination) or (range, range-rate), in which case R has
two different analytical expressions, one for i even, the other for i odd.

The prediction function is used to predict the outcome of a specific ob-
servation at some time ti, with i = 1, . . . , m. However, the observation
result ri is generically not equal to the prediction.

Definition D.5. The difference between the observation and the corre-
sponding prediction is the residual

ξi := ri −R(y(ti), ti,ν) i = 1, . . . , m.

The vector of the residuals is ξ = (ξi)i=1, ...,m ∈ Rm, which is in principle a
function of all the p+ p′ + p′′ variables (y0,µ,ν).

D.2 The minimum principle

The basic tool of the classical theory of orbit determination (Gauss 1809) is
the definition of a target function Q(ξ) depending on the vector of residuals
ξ. The target function cannot be chosen arbitrarily, but needs to satisfy suit-
able conditions of regularity and convexity. We shall focus on the simplest
case, in which Q is proportional to the sum of squares of all the residuals.

Definition D.6. The target function is the function Q : Rm → R defined
to be

Q(ξ) :=
1

m
ξ>ξ =

1

m

m∑
i=1

ξ2
i .

Since each residual is a function of all the parameters, the target function
is also a function of (y0,µ,ν). The next step is to select the parameters to
be fit to the data: let x ∈ RN be a sub-vector of (y0,µ,ν) ∈ Rp+p′+p′′ , that
is x = (xi), with i = 1, . . . , N and with each xi either a component of the
initial conditions, or a dynamical parameter, or a kinematical parameter.
Then we consider the target function

Q(x) := Q(ξ(x))

as a function of x only, leaving the vector of the consider parameters κ ∈
Rp+p′+p′′−N (all the parameters not included in x) fixed at the assumed
value. Theminimum principle selects as nominal solution the point x∗ ∈ RN
where the target function Q has its minimum value Q∗.
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D.3 The least squares method

D.3.1 Non-linear least squares

The target function of the non-linear least squares problem

Q(x) :=
1

m
ξ(x)>ξ(x)

is a differentiable function of the fit parameters x, although it is not just a
quadratic function. The partial derivatives of the residuals with respect to
the fit parameters are assembled in the arrays

B –
∂ξ

∂x
(x), H –

∂2ξ

∂x2
(x)

where the design matrix B is an m × N matrix, with m ≥ N , and H is a
3-index array of shapem×N×N . In the context of orbit determination, the
partial derivatives of the residuals are the partials of the prediction function
(with sign changed). These can be computed by using the chain rule from
the partials of the observation function R and the partials of the general
solution y(t) = y(y0,µ,ν) of the equation of motion

∂ξi
∂xk

= −∂R
∂y

(y(ti))
∂y

∂xk
(ti)−

∂R

∂xk
(y(ti)),

where the first term is relevant if xk is a component of the vector (y0,µ)
(either an initial condition or a dynamical parameter), the second one if xk
is a component of ν (a kinematical parameter). The formula for H is less
simple, containing first and second derivatives of the general solution of the
equation of motion.

To find the minimum, we look for stationary points of Q(x):

∂Q

∂x
=

2

m
ξ>B = 0.

Two problems contribute in making this case not as simple as the linear one.
First, the equation above is a system of non-linear equations, and generally
does not have an explicit solution. Second, a stationary point does not need
to be the absolute minimum point: it could be a saddle, or a local minimum.
The first problem can be handled by using some iterative method, such as
the Newton method, or some modification of it. The second one requires
to check the Hessian matrix of second derivatives to exclude saddles; the
methods to ensure that a local minimum found by some iterative method is
the absolute minimum are computationally expensive.
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The Newton method

The standard Newton method involves the computation of the second deriva-
tives of the target function:

∂2Q

∂x2
=

2

m
(B>B + ξ>H) =

2

m
Cnew

where Cnew is a N × N matrix, non-negative in the neighbourhood of a
local minimum. Given the residuals ξ(xk) obtained from the value xk of the
parameters at iteration k, the (non-zero) gradient is expanded around xk

∂Q

∂x
(x) =

∂Q

∂x
(xk) +

∂2Q

∂x2
(xk)(x− xk) + . . .

where the dots stand for terms of higher order in (x− xk). If this gradient
has to be zero in x = x∗

0 =
∂Q

∂x
(xk) +

∂2Q

∂x2
(xk)(x

∗ − xk) + . . .

that is
Cnew(x∗ − xk) = −B>ξ + . . .

Neglecting the higher order terms, if the matrix Cnew, as computed at the
point xk, is invertible then the iteration k+1 of the Newton method provides
a correction xk+1 − xk with

xk+1 = xk + C−1
newD, D = −B>ξ,

where also D = D(xk). The point xk+1 should be a better approximation to
x∗ than xk. In practice, the Newton method may converge or not, depending
upon the choice of the first guess x0 selected to start the iterations.

Differential corrections

The most used method is a variant of the Newton method, known in this
context as differential corrections, with each iteration making the correction

xk+1 = xk − (B>B)−1B>ξ

where the normal matrix C = B>B, computed at xk, replaces the matrix
Cnew. This amounts to neglecting, on top of the terms of order ≥ 2 in
(x∗ − xk), also the term ξ>H(x∗ − xk). The additional neglected term is of
the first order in (x∗− xk) but contains also the residuals, thus it is smaller
than C(x∗ − xk) if the residuals are small enough.
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The main practical motivation for this simplification of the Newton
method is that the computation of the three-index arrays of second deriva-
tives ∂B/∂x = ∂2ξ/∂x2 for P = p′ + p′′ dynamical parameters (p′ initial
conditions and p′′ parameters to be solved appearing in the equation of mo-
tion) requires to solve p′P 2 scalar differential equations on top of the usual
p′ + p′P for the equation of motion and the variational equation.

One iteration of differential corrections is just the solution of a linear
least squares problem, with normal equation

C(xk+1 − xk) = D

where the right hand side D = −B>ξ is the same as in the Newton method.
This linear problem can be obtained by truncation of the target function

Q(x) ' Q(xk) +
2

m
ξ>B(x− xk) +

1

m
(x− xk)

>C(x− xk) ,

which is not the Taylor expansion to order 2, since Cnew is replaced by C.
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