
CHARACTERISING ERGODICITY

ALESSIO DEL VIGNA

In this short note we mainly follows [2] and some exercises of [1] to collect characterisations of

ergodicity.

We start by establishing the notation and recalling some definitions. Throughout the note,

(M,B, µ) is a probability measure space and f : M →M a measurable transformation.

Definition 1. We say that f is ergodic with respect to the measure µ if for all measurable sets

B ∈ B such that f−1B ⊆ B it holds that µ(B) = 0 or µ(B) = 1.

1. Ergodicity via invariant sets

Invariants sets play a fundamental role in ergodic theory. They are measurable sets B whose

backward image under a transformation f is not necessarily contained in B itself, but does not

differ “too much” from B. To state the formal definition, recall that the symmetric difference of

two sets A and B is the set

A4B := (A \B) ∪ (B \A).

Definition 2. A measurable set B ∈ B is invariant under f is µ(B4f−1B) = 0.

Definition 3. A function ψ : M → R is invariant is ψ(x) = ψ(f(x)) for µ-a.e. x ∈M .

Note that a measurable set B is invariant if and only if its indicator function 1B is an invariant

function.

Theorem 4. Let (M,B, µ) be a probability measure space and f : M → M a measure-preserving

transformation. The following conditions are equivalent:

(i) f is ergodic with respect to µ;

(ii) for every invariant set B ∈ B we have µ(B) = 0 or µ(B) = 1;

(iii) for every measurable set B ∈ B with µ(B) > 0 we have µ
(⋃

n≥0 f
−nB

)
= 1;

(iv) for every measurable sets A,B ∈ B with µ(A) > 0 and µ(B) > 0 there exists a positive integer

j such that µ(f−jA ∩B) > 0.

Proof. ((i)⇒(ii)) Let B ∈ B be an invariant set. We claim that µ(f−nB4B) = 0 for every integer

n ≥ 0. We have the inclusion

f−nB4B = f−nB \B ∪B \ f−nB ⊆
n−1⋃
j=0

f−(n−j)B \ f−(n−j−1)B ∪
n−1⋃
j=0

f−jB \ f−(j+1)B =

=

n−1⋃
j=0

(
f−(j+1)B4f−jB

)
=

n−1⋃
j=0

f−j
(
f−1B4B

)
.
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Thus, as f preserves the measure µ, we have µ(f−nB4B) ≤ n · µ(f−1B4B) = 0, and the claim is

proved. Now let

B∞ :=

∞⋂
n=0

∞⋃
j=n

f−jB.

For every n ≥ 0 we have

µ

B4 ∞⋃
j=n

f−jB

 ≤ ∞∑
j=n

µ(B4f−jB) = 0.

Since the sets
⋃∞

j=n f
−jB decrease as n increases we have µ(B4B∞) = 0, which implies µ(B) =

µ(B∞). Moreover

f−1B∞ =
∞⋂
n=0

∞⋃
j=n

f−(j+1)B =
∞⋂
n=0

∞⋃
j=n+1

f−jB = B∞,

which means that the set B∞ is invariant. Thus from (i) it follows that µ(B∞), which is equal to

µ(B), is either 0 or 1.

((ii)⇒(iii)) Let B ∈ B with µ(B) > 0 and set B′ :=
⋃∞

j=1 f
−jB. We have f−1B′ ⊆ B′ and since f

preserves µ we also have µ(f−1B′) = µ(B′). Hence µ(f−1B′4B′) = 0 and (ii) implies that µ(B′)

is either 0 or 1. By construction f−1B ⊆ B′ and µ(f−1B) = µ(B) > 0, thus µ(B′) = 1.

((iii)⇒(iv)) Let A ∈ B and B ∈ B with positive measure. By (iii) we have µ
(⋃∞

j=1 f
−jA

)
= 1,

thus

0 < µ(B) = µ

B ∩ ∞⋃
j=1

f−jA

 = µ

 ∞⋃
j=1

(B ∩ f−jA)

 .

Then there must exist a positive integer j such that µ(B ∩ f−jA) > 0.

((iv)⇒(i)) Let B ∈ B a set such that f−1B ⊆ B and suppose by contradiction that 0 < µ(B) < 1.

Then for all integers j ≥ 0 we would have

0 = µ(B ∩ (M \B)) = µ(f−jB ∩ (M \B)),

which contradicts (iv) since µ(B) > 0 and µ(M \B) > 0. �

2. Ergodicity via invariant functions

Theorem 5. Let (M,B, µ) be a probability measure space and f : M → M a measure-preserving

transformation. The following conditions are equivalent:

(i) f is ergodic with respect to µ;

(ii) every integrable invariant function ψ : M → R is constant µ-a.e. in M ;

(iii) for every integrable invariant function ψ : M → R we have ψ(x) =
∫
ψ dµ for µ-a.e. x ∈M ;

(iv) every invariant function ψ : M → R with ψ ∈ L2(M,B, µ) is constant µ-a.e. in M .

Proof. ((i)⇒(ii)) For k and n ≥ 0 integers define

X(k, n) :=

{
x ∈M :

k

2n
≤ ψ(x) <

k + 1

2n

}
= ψ−1

[
k

2n
,
k + 1

2n

)
.
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The function ψ is measurable, thus X(k, n) ∈ B for every k and every n. Since

f−1X(k, n)4X(k, n) ⊆ {x ∈M : ψ(f(x)) 6= f(x)}

and ψ is f -invariant it follows that µ(f−1X(k, n)4X(k, n)) = 0. From Theorem 4-(ii), the ergod-

icitiy of f implies that µ(X(k, n)) = 0 or µ(X(k, n)) = 1 for every k and n. As ψ is integrable,

then ψ is finite almost everywhere, which is equivalent to say that for each n

ψ−1R = ψ−1

( ∞⋃
k=−∞

[
k

2n
,
k + 1

2n

))
=

∞⋃
k=−∞

ψ−1
[
k

2n
,
k + 1

2n

)
=

∞⋃
k=−∞

X(k, n)

is equal to M up to a zero-measure set. Thus
∑∞

k=−∞ µ(X(k, n)) = µ(M) = 1, which implies that

there is a unique kn for which µ(X(kn, n)) = 1. Let

Y :=
∞⋂
n=1

X(kn, n),

so that µ(Y ) = 1. Since by construction ψ is constant on Y we have that ψ is constant µ-a.e.

((ii)⇒(iii)) The validity of this implication is obvious, also recalling that µ(M) = 1.

((iii)⇒(iv)) This implication clearly holds, as if ψ ∈ L2(M,B, µ) then ψ is also integrable.

((iv)⇒(i)) We actually show that (iv) implies the condition stated in Theorem 4-(ii), which is

equivalent to (i). Consider a set B ∈ B such that µ(f−1B4B) = 0. The function 1B is invariant

and it is clearly in L2(M,B, µ). Hence (iv) implies that 1B is constant µ-a.e. on M . But then

either 1B(x) = 0 for µ-a.e. x ∈ M or 1B(x) = 1 for µ-a.e. x ∈ M , so that µ(B) =
∫
1B dµ is

respectively equal to 0 or 1, as we wanted to prove. �
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