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In this note we give a brief introduction to the factorial number system, proving existence and

uniqueness of the factorial representation of positive integers.

1. introduction

Mixed-radix numeral systems are positional number systems in which the weights associated to

each position do not form a geometric sequence and instead form a sequence in which each weight

is an integral multiple of the previous one, but not by the same factor. In this note we consider

the so-called factorial number system (the name has been introduced in [2]), in which the weights

are the factorial of the positive integers [1, 4].

Definition 1. Let n be a positive integer. The factorial base representation of n is given by

n = a1 · 1! + a2 · 2! + · · ·+ ak · k!

where 0 ≤ aj ≤ j for each j = 1, . . . , k and ak 6= 0.

Remark 2. Note that k is the largest integer satisfying k! ≤ n < (k + 1)!

In Section 2 we prove that each positive integer admits a unique factorial base representation. For

instance, the representation of the number 2020 in the factorial number system is

2020 = 2 · 6! + 4 · 5! + 4 · 4! + 0 · 3! + 2 · 2! + 0 · 1!

The following procedure, presented in [3], is a fast and easy way of finding the digits of the factorial

representation of a positive integer n. Start setting q1 = n. If j ≥ 1 we perform the Euclidean

division between qj and the radix j + 1, yielding qj = qj+1(j + 1) + rj . Then rj is the j-th digit of

the factorial representation, that is aj = rj . The quotients form a strictly decreasing sequence of

non-negative integers, so that at some point they become zero and the process terminates.

Remark 3. Note that we start dividing by 2, since dividing by 1 would always yields a0 = 0, and

we omit this digit as it has no effect on the representation of any positive integer.

Applying the above procedure to n = 2020 we have

2020 = 1010 · 2 + 0

1010 = 336 · 3 + 2

336 = 84 · 4 + 0

84 = 16 · 5 + 4

16 = 2 · 6 + 4

2 = 0 · 7 + 2

which yields the above representation.
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2. existence and uniqueness of the factorial representation

We start by proving a property of factorials. In the language of the factorial base representation

of numbers, this property tells us what happens when we consider a number with factorial repre-

sentation such that aj = j for each j = 1, . . . , k and we add 1. The same question for the base 10

representation of numbers would be the following: what happens if we take 99 · · · 9︸ ︷︷ ︸
k times

and add 1?

Lemma 4. For every positive integer k holds

k∑
j=1

j · j! + 1 = (k + 1)!

Proof. We argue by induction on k ≥ 1. The case k = 1 is trivial. Now suppose that the identity

holds for a given k ≥ 1, then

k+1∑
j=1

j · j! + 1 =
k∑

j=1

j · j! + 1 + (k + 1) · (k + 1)! = (k + 1)! + (k + 1) · (k + 1)! = (k + 2)!

The inductive step is thus completed. �

Remark 5. A key consequence of Lemma 4 is the following: fixed a positive integer k, a factorial

representation with k summands represents integers not exceeding (k + 1)!− 1.

Theorem 6. Every positive integer n admits a unique factorial base representation.

Proof. (Uniqueness) Consider n =
∑k

j=1 aj · j! and m =
∑h

j=1 bj · j!, where 0 ≤ aj ≤ j for every

j = 1, . . . , k and 0 ≤ bj ≤ j for every j = 1, . . . , h. We first note that if k 6= h, say k < h, we have

n =
k∑

j=1

aj · j! < (k + 1)! ≤ h! ≤
h∑

j=1

bj · j! = m,

where the first inequality holds by Lemma 4. Hence we can assume k = h and we have to prove

that if n = m then aj = bj for every j = 1, . . . , k. By contradiction, suppose that there exists an

index r such that ar 6= br and suppose that r is the smallest index with this property, so that

k∑
j=r

(aj − bj) · j! = 0.

If r = k the thesis holds. If r < k, extracting the term with index r the remaining sum is a multiple

of (r + 1)!, so that

(ar − br) · r! + C · (r + 1)! = 0,

where C is integer. By construction 1 ≤ |ar − br| ≤ r, thus |ar − br| · r! < (r + 1)!, which implies

C = 0 and in turn ar = br, a contradiction.

(Existence) Let k be a positive integer and consider factorial representation with k summands. We

already observed in Remark 5 that in this way we can represent numbers n with 1 ≤ n ≤ (k+1)!−1.

Moreover, the factorial representations are pairwise distinct by the first part of this proof and they

are exactly (k+1)!−1 because we have j+1 possible choices for the coefficient aj and ak cannot be

zero. Thus we can apply the pigeonhole principle and conclude that each n with 1 ≤ n ≤ (k+1)!−1

has a factorial representation. Since k is arbitrary, the theorem is proved. �
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We now give an alternative proof of the existence of the factorial representation arguing by

induction on n ≥ 1. The base step n = 1 is trivial. For the inductive step we suppose n =
∑k

j=1 aj ·j!
with 0 ≤ aj ≤ j for each j = 1, . . . , k and ak 6= 0, and prove that also n + 1 admits a factorial

representation. If aj = j for each j = 1, . . . , k then Lemma 4 implies n + 1 = 1 · (k + 1)!, which is

a factorial representation. Otherwise let r be the minimum index such that ar < r, so that we can

split

n =

r−1∑
j=1

j · j! +

k∑
j=r

aj · j!

Hence

n + 1 =
r−1∑
j=1

j · j! + 1 +
k∑

j=r

aj · j! = r! +
k∑

j=r

aj · j! = (ar + 1) · r! +
k∑

j=r+1

aj · j!,

which is a factorial representation because 1 ≤ ar + 1 ≤ r.
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