1
$$| (z) = z^3 - z^2 + z + 1 + a \in \mathbb{R}[z]$$

(a) $z = -i$ $\Rightarrow | (-i) = 0$
 $x + 1 - (+1 + a) = 0$
 $a = -2$
(b) $z^3 - z^2 + z - 1 = z^2(z - 1) + z - 1 = z^2(z - 1)$
 $= (z - 1)(z^2 + 1)$
 $\Rightarrow z \wedge dia$ 1, i, -i

1,1,-6

Per K \de \pm 1 c/2 un un (ca sol Pu K = 1 $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad A \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ -1 & 1 & -1 & 0 \end{pmatrix}$ rkA = 2 e rk A | b = 2 => i rusolubile perchi ha matrice (01) 1 quinde ha enfinete sol PER CASA fare k=-1, che à analogo

Per quali
$$K$$
 $12+8x+Kx^2 \in W^7$
Scigliendo $B_V = (1, x, x^2)$, $V \cong_B \mathbb{R}^3$
e ogni polinomio i rapp dal suo vettore
dei coefficienti

 $V = \mathbb{R}_{\leq 2} [x], W = <1-x+x^2, 2+2x-x^2>$

$$\Rightarrow \widetilde{W} = \left\langle \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{2}{2} \\ -1 \end{pmatrix} \right\rangle$$
Per qual $k \begin{pmatrix} 12 \\ k \end{pmatrix} \in \widetilde{W}^{1}$

$$A_{K} = \begin{pmatrix} 1 & 2 & 12 \\ -1 & 2 & 8 \\ 1 & -1 & K \end{pmatrix}$$

$$\begin{pmatrix} 12 \\ 8 \\ K \end{pmatrix} \in \widetilde{W} \iff nKA_{K} < 3 \iff dat A_{K} = 0$$

$$det A_{K} = 2K + 16 + 12 - 24 + 8 + 2K =$$

$$= 4K + 12$$

 $A_k = 0 \iff k = -3$

4
$$f_h \mathbb{R}^3 \rightarrow \mathbb{R}^3$$
 $f_h(x,y,z) = (x,o,x+hy+h^2z)$
 $\Rightarrow A_h = [f_h]_c^c = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & h & h^2 \end{pmatrix}$

(a) f_h surgettiva \iff $^2K A_h = 3$
 $ma A_h$ ha una rega di o
 $\Rightarrow ^2k A_h < 3 \quad \forall h \in \mathbb{R}$
 $\Rightarrow f_h$ man surgettiva

(b)
$$h = 3 \Rightarrow A_{h} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 3 & 9 \end{pmatrix}$$

$$\Rightarrow \dim \operatorname{Ken} A_{h} = 3 - \dim \operatorname{Im} A_{h} = 3 - 2 = 1$$

$$\frac{B \text{ ASE DI } \operatorname{Ken} A_{h} \quad (h = 3)}{0 = 3 w_{2} - w_{3}} = 3 f_{h}(\epsilon_{2}) - f_{h}(\epsilon_{3}) = f_{h}\left(\frac{0}{3}\right)$$

$$\Rightarrow \operatorname{Ken} f_{h} = \left\langle \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix} \right\rangle$$

$$h = 0 \implies d(m \text{ Im } f_h = 1$$

$$h \neq 0 \implies d(m \text{ Im } f_h = 2$$

$$h = 0 \quad \text{Im } f_h = \langle \binom{0}{1} \rangle \quad \text{Kur } f_h = \langle \binom{0}{1}, \binom{0}{1} \rangle$$

$$\implies \text{Im } f_h \quad \text{Kur } f_h = \{0\}$$

$$\iff d(m) \quad \text{Kur } f_h + \text{Im } f_h) = 2 + 1 = 3$$

$$\implies \mathbb{R}^3 = \text{Kur } f_h \oplus \text{Im } f_h$$

(c) Perquel her R3= Korf, # Imfh1

$$A_{h} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & h & h^{2} \end{pmatrix}$$

$$Im f_h = \langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \rangle$$

$$0 = h w_2 - w_3 = f_k \begin{pmatrix} 0 \\ h \\ -1 \end{pmatrix} \Rightarrow kw f_h = \langle \begin{pmatrix} 0 \\ h \\ -1 \end{pmatrix} \rangle$$

$$\Rightarrow k w f_h \cap Im f_h = \{ \bullet \}$$

$$\Rightarrow d (h (k w f_h + Im f_h) = 1 + 2 = 3$$

 $\Rightarrow d(h)(Kvrf_h + Imf_h) = 1 + 2 = 3$ $\Rightarrow \mathbb{R}^3 = Kvrf_h \oplus Imf_h$

(d)
$$G = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$$

$$M_{h} = \Gamma f_{h} \rfloor_{c}^{G} \quad \text{for } h = 3$$

$$(M_h)^1 = f_h \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 10 \end{pmatrix}$$

$$(M_h)^2 = f_h \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 13 \end{pmatrix} \implies M_h = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 10 & 13 & 1 \end{pmatrix}$$

$$(M_h)^3 = f_h \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

(4)
$$h=1$$
 $L = \{g \ \mathbb{R}^3 \rightarrow \mathbb{R}^3 \ g \cdot f_h = 0\}$

$$g \cdot f_h = 0 \iff \gamma \left(\text{Im} f_h \right) = \{0\}$$

$$\text{Im} f_h = \left(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) >$$

$$\text{W}_1 \qquad \text{W}_2$$

Sugham. $B = (w_1, w_2, v)$, con v the completa (w_1, w_2) a base de \mathbb{R}^2

Data g

EL, considerame [g]

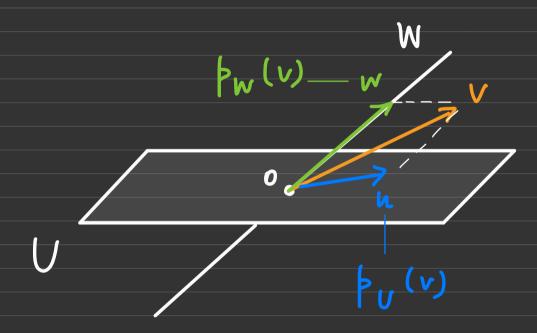
B

C

$$\begin{bmatrix}
\gamma \end{bmatrix}_{C}^{B} = \begin{pmatrix} 0 & 0 & | * \\ 0 & 0 & | * \end{pmatrix} \in M(3,3,\mathbb{R}) \\
\Rightarrow Possiamo "Vedere" L come \\
\widetilde{L} = \left\{ M \in H(3,3,\mathbb{R}) \quad M^{1} = M^{2} = 0 \right\} \\
\text{(are } L \cong \widetilde{L} \quad \text{tramite } g \mapsto [g]_{C}^{B}; \\
\Rightarrow dim L = dim \widetilde{L} = 3$$

PROIEZIONI SU SOTTOSPAZI V sp v2H V = U ⊕ W ⇒ VveV ∃lueU, wew v = n+w Def $p_{\nu} V \rightarrow V$, $p_{\nu}(v) = u$, $d_{\nu}v_{\nu}$ $u \stackrel{?}{=} l' u n c \omega e l d l U t l V = u + w$ Con W & W en i lineari 120h

Idea grom $V = \mathbb{R}^3$, dimU = 2, limW = 1



 $\frac{P_{rup}}{|u|} = id_{u} (p_{u}(u) = u \forall u \in U)$ (11) Impu = U, Kurpu = W (=> Korpu & Impu = U & W = V) (III) $p_{\nu}^2 = p_{\nu}$ (idempotente) (1v) | v · | w = | w · | u = 0 PER CASA dari la prova delle proprietà

Prop
$$n = dim V$$
, $d_{v} = dim U$, $d_{w} = dim W$
 $B = (B_{v}, B_{w}) \Rightarrow [P_{v}]_{B}^{B} = (I_{d_{v}} \mid 0)$

Twrema $f : V \Rightarrow V$ liman, $f^{2} = f$
 $\Rightarrow \exists U \leq V \text{ soft } \Rightarrow f = P_{v}$

[Suggo $V = Kerf \oplus Imf$

· U = Imf 1 mostrari In f = pu

$$W = \{ y = 0 e z = 0 \} = \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle$$

$$\Box P_{U} \Box_{C}^{C} = 1$$

 $\mathbb{R}^3 = U \oplus W \qquad U = \langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle$

 $\mathfrak{B} = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \xrightarrow{} \mathbb{E} \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$ $\mathbb{R}^{3} \xrightarrow{\text{Pv}} \mathbb{R}^{3}_{0}$ $\mathbb{R}^{2} \xrightarrow{\text{Pv}} \mathbb{R}^{3}_{0}$ $\mathbb{R}^{2} \xrightarrow{\text{Pv}} \mathbb{R}^{3}_{0}$ $\mathbb{R}^{3} \xrightarrow{\text{Pv}} \mathbb{R}^{3}_{0}$ $\mathbb{R}^{3} \xrightarrow{\text{Pv}} \mathbb{R}^{3}_{0}$

$$U = \{ p \in V \mid p(o) = p(1) = o \}$$

$$W = \langle x^2 + 3, x^2 - 3 \rangle$$

PER LASA Svolgure