EXERCISES FOR ORAL EXAMS

Exercise 1. Is the exponential map \(\exp : \mathbb{C} \rightarrow \mathbb{C} \) injective or surjective? Show that it is locally invertible.

Exercise 2. In the linear space of polynomials of degree \(\leq n \), \(\mathbb{R}_n[X] \), you can define the linear map

\[
T : p \mapsto e^{-X} \int e^t p(t) dt.
\]

Prove that \(T(\mathbb{R}_n[X]) \subseteq \mathbb{R}_n[X] \) and that it is invertible. \(^1\)

Exercise 3. Let \(f_1 \) and \(f_2 \) two linear application on a space \(V \). Find necessary and sufficient conditions which ensure the existence of a linear application \(g \neq 0 \) such that

\[
g \circ f_1 = f_1 \circ g = g \circ f_2 = f_2 \circ g = 0
\]

Exercise 4. Let \(V \) be an \(\mathbb{R} \)-linear space of finite dimension. Prove that the set \(\text{GL}(V) \) of linear invertible maps generates the linear space of linear maps \(\mathcal{L}(V) \). \(^2\)

Exercise 5. Give an example of linear space \(X \) and function \(f : X \rightarrow X \) such that the sequences \(\ker(f^i) \) and \(\text{Img}(f^i) \) are not stable.

Exercise 6. In \(\mathbb{R}[X] \), define the set \(S_n = \{ p \in \mathbb{R}[X] \mid \#Z_p = n \} \), where \(Z_p \) is the zeroes set of \(p \). Is it true that \(\text{Span}(S_n) = \mathbb{R}[X] \)?

Exercise 7. Let \(N \) be a subspace of the space of linear maps \(\mathcal{L}(V) \), where \(V \) is a finite-dimensional linear space. Suppose that in every pair of elements of \(N \), two maps commute with each other, and every element in \(N \) is nilpotent. Prove that there exists \(v \neq 0 \) such that \(f(v) = 0 \) for every \(f \in N \). \(^3\)

\(^1\)This exercises was taken from the textbook "Problemi Scelti di Analisis Matematica I" authored by E. Acerbi, L. Modica and S. Spagnolo

\(^2\)This exercises was taken from the final exam of the course of "Geometria I" of R. Benedetti, M. Ferrarotti and E. Fortuna on June 1997

\(^3\)This exercise is a preliminary Lemma to the Engels’ Theorem, P. Humpreys, "Introduction to Lie Algebras and Representation Theory"