Set-up 00000 Untameness

Double-membership graphs of models of Anti-Foundation

Rosario Mennuni joint work with Bea Adam-Day and John Howe

University of Leeds

 $\begin{array}{c} {\rm Logic \ Seminar} \\ {\rm Manchester, \ 25^{th} \ September \ 2019} \end{array}$

Set-up 00000 Untameness 000 **Games** 00000

BPGMTC20 (British Postgraduate Model Theory Conference)

Leeds, 8–10 January 2020

www.tinyurl.com/BPGMTC20

FREE accommodation provided *

Offer subject to availability.

Untameness 000

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

Main point

In models of Anti-Foundation, the relation $x \in y \in x$ encodes plenty of information.

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

Main point

In models of Anti-Foundation, the relation $x \in y \in x$ encodes plenty of information.

Plan of the talk:

- Set-up: double-membership graphs; Anti-Foundation.
- Untameness: why these graphs are (very) wild.
- Games: how ideas from finite model theory help.

Games 00000

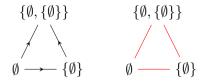
Membership graphs

A model M of set theory is a digraph.

 $\begin{cases} \emptyset, \{\emptyset\} \} \\ \swarrow & \longrightarrow \\ \{\emptyset\} \end{cases}$

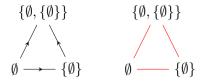
Membership graphs

A model M of set theory is a digraph. Let M_S be its symmetrisation.



Membership graphs

A model M of set theory is a digraph. Let M_S be its symmetrisation.



Fact (Folklore (Gaifman?))

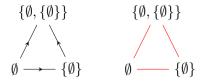
If $M \vDash \mathsf{ZFC}$ is countable, then M_S is the Random Graph.

Proof.

Show that M_S satisfies the Random Graph axioms.

Membership graphs

A model M of set theory is a digraph. Let M_S be its symmetrisation.



Fact (Folklore (Gaifman?))

If $M \vDash \mathsf{ZFC}$ is countable, then M_S is the Random Graph.

Proof.

Show that M_S satisfies the Random Graph axioms.

How much set theory does M need? Emptyset, Pairing, Union, and Foundation.

Foundation: no infinite descending \in -sequences. In particular, no $x \in x$, no $x \in y \in x$.

What happens without Foundation?

Untameness 000

Double-membership

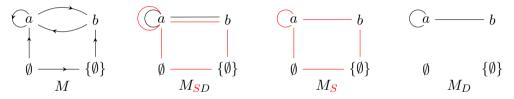
Definition

Let M be an $\{\in\}$ -structure. $S(x, y) \coloneqq x \in y \lor y \in x$ $D(x, y) \coloneqq x \in y \land y \in x$. Double-membership graph M_D : reduct of M to $\{D\}$. Similarly for M_{SD} .

Double-membership

Definition

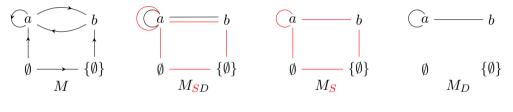
Let M be an $\{\in\}$ -structure. $S(x, y) \coloneqq x \in y \lor y \in x$ $D(x, y) \coloneqq x \in y \land y \in x$. Double-membership graph M_D : reduct of M to $\{D\}$. Similarly for M_{SD} .



Double-membership

Definition

Let M be an $\{\in\}$ -structure. $S(x, y) \coloneqq x \in y \lor y \in x$ $D(x, y) \coloneqq x \in y \land y \in x$. Double-membership graph M_D : reduct of M to $\{D\}$. Similarly for M_{SD} .

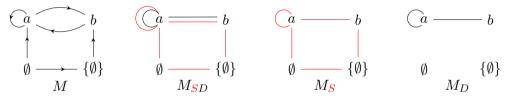


From now on graph=loopy graph: points are allowed to have an edge to themselves.

Double-membership

Definition

Let M be an $\{\in\}$ -structure. $S(x, y) \coloneqq x \in y \lor y \in x$ $D(x, y) \coloneqq x \in y \land y \in x$. Double-membership graph M_D : reduct of M to $\{D\}$. Similarly for M_{SD} .



From now on graph=loopy graph: points are allowed to have an edge to themselves.

Proposition (Adam-Day, Howe, M.)

Let G be a graph in $M \vDash \mathsf{ZFC}$. There is $N \vDash \mathsf{ZFC} \setminus \{\text{Foundation}\}\$ such that N_D is isomorphic to G plus infinitely many isolated points. In particular M_S can have an arbitrary number of points with loops. Proof

So we need structure. AFA: allow non-well-founded sets (e.g. $x \in x$), but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all relations'.

So we need structure. AFA: allow non-well-founded sets (e.g. $x \in x$), but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all relations'. Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x = S_x$, where $S_x \subseteq X \cup A$. Solution: what you expect.

So we need structure. AFA: allow non-well-founded sets (e.g. $x \in x$), but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x = S_x$, where $S_x \subseteq X \cup A$. Solution: what you expect.

Example

 $X = \{x, y\}, A = \{\emptyset, \{\emptyset\}\}, \text{ equations } x = \{x, y, \emptyset\} \text{ and } y = \{x, \{\emptyset\}\}.$

So we need structure. AFA: allow non-well-founded sets (e.g. $x \in x$), but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x = S_x$, where $S_x \subseteq X \cup A$. Solution: what you expect.

Example

So we need structure. AFA: allow non-well-founded sets (e.g. $x \in x$), but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x = S_x$, where $S_x \subseteq X \cup A$. Solution: what you expect.

Example

$$X = \{x, y\}, A = \{\emptyset, \{\emptyset\}\}, \text{ equations } x = \{x, y, \emptyset\} \text{ and } y = \{x, \{\emptyset\}\}.$$

A solution is $x \mapsto a, y \mapsto b$ as in:
$$\emptyset \longrightarrow \{\emptyset\}$$

Anti-Foundation Axiom: 'every flat system has a unique solution'. ZFA is ZFC with Foundation replaced by Anti-Foundation.

So we need structure. AFA: allow non-well-founded sets (e.g. $x \in x$), but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x = S_x$, where $S_x \subseteq X \cup A$. Solution: what you expect.

Example

Anti-Foundation Axiom: 'every flat system has a unique solution'. ZFA is ZFC with Foundation replaced by Anti-Foundation.

Fact (Aczel; Forti, Honsell)

 ZFA is equiconsistent with $\mathsf{ZFC}.$

Untameness 000 **Games** 00000

Summary of results

Starting point:

Theorem (Adam-Day, Cameron)

If $M \models \mathsf{ZFA}$ is countable, then M_S is the Fraïssé limit of finite loopy graphs. M_{SD} and M_D are not ω -categorical: every finite graph embeds as a union of connected components in M_D .

Starting point:

Theorem (Adam-Day, Cameron)

If $M \models \mathsf{ZFA}$ is countable, then M_S is the Fraïssé limit of finite loopy graphs. M_{SD} and M_D are not ω -categorical: every finite graph embeds as a union of connected components in M_D .

Questions that were asked:

- 1. Are there infinitely many countable models of $Th(M_{SD})$? Of $Th(M_D)$?
- 2. Are there infinitely many countable M_{SD} ? M_D ?
- 3. Infinite connected components of M_D ?
- 4. ZFA with Infinity replaced by its negation?
- 5. $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same for M_D .

Starting point:

Theorem (Adam-Day, Cameron)

If $M \models \mathsf{ZFA}$ is countable, then M_S is the Fraïssé limit of finite loopy graphs. M_{SD} and M_D are not ω -categorical: every finite graph embeds as a union of connected components in M_D .

Questions that we study:

- 1. Are there infinitely many countable models of $Th(M_{SD})$? Of $Th(M_D)$?
- 2. Are there infinitely many countable M_{SD} ? M_D ?
- 3. Infinite connected components of M_D ?

5. M_{SD} ≡ N, both countable. Is N an SD-graph? Same for M_D.
6. Is Th({M_D | M ⊨ ZFA}) complete?

Starting point:

Theorem (Adam-Day, Cameron)

If $M \models \mathsf{ZFA}$ is countable, then M_S is the Fraïssé limit of finite loopy graphs. M_{SD} and M_D are not ω -categorical: every finite graph embeds as a union of connected components in M_D .

Questions that we study:

- 1. Are there infinitely many countable models of $Th(M_{SD})$? Of $Th(M_D)$? Yes.
- 2. Are there infinitely many countable M_{SD} ? M_D ? **Yes.**
- 3. Infinite connected components of M_D ? Basically arbitrary.

5. $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same for M_D . No.

6. Is Th({ $M_D \mid M \vDash \mathsf{ZFA}$ }) complete? No. Completions characterised.

Starting point:

Theorem (Adam-Day, Cameron)

If $M \models \mathsf{ZFA}$ is countable, then M_S is the Fraïssé limit of finite loopy graphs. M_{SD} and M_D are not ω -categorical: every finite graph embeds as a union of connected components in M_D .

Questions that we study:

- 1. Are there infinitely many countable models of $Th(M_{SD})$? Of $Th(M_D)$? Yes.
- 2. Are there infinitely many countable M_{SD} ? M_D ? **Yes.**
- 3. Infinite connected components of M_D ? Basically arbitrary.

5. $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same for M_D . No.

6. Is Th({ $M_D \mid M \vDash \mathsf{ZFA}$ }) complete? No. Completions characterised.

Fine print: assume $\operatorname{Con}(\mathsf{ZFC})$. Otherwise there might be nothing to study.

Connected components and non-smallness Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

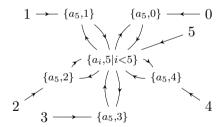
WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \vDash R(i, j)\} (i \in \kappa)$.

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \vDash R(i, j)\} (i \in \kappa)$.

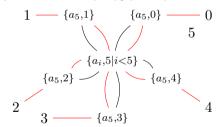


Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \models R(i, j)\} (i \in \kappa)$.



Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

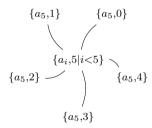
WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \vDash R(i, j)\} (i \in \kappa)$.

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \vDash R(i, j)\} (i \in \kappa)$.



Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \models R(i, j)\}(i \in \kappa)$. Why not just $x_i = \{x_j \mid j \in \kappa, G \models R(i, j)\}$? Solutions need not be injective: if $x \mapsto a$ solves $x = \{x\}$ then $x = \{y\}, y = \{x\}$ is solved by $x \mapsto a, y \mapsto a, \{a_{5}, 2\}$ and solutions are unique. $\{a_{5}, 3\}$

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash \mathsf{ZFA}$ is isomorphic to a union of connected components of M_D .

Proof.

WLOG dom $G = \kappa$. Take a solution to $x_i = \{i, x_j \mid j \in \kappa, G \models R(i, j)\}(i \in \kappa).$ $\begin{cases}a_{5,1}\} & \{a_{5,0}\}\end{cases}$

Why not just $x_i = \{x_j \mid j \in \kappa, G \models R(i, j)\}$? Solutions need not be injective: if $x \mapsto a$ solves $x = \{x\}$ then $x = \{y\}, y = \{x\}$ is solved by $x \mapsto a, y \mapsto a, \{a_{5,2}\}$ and solutions are unique.

Corollary (Adam-Day, Howe, M.)

 ${a_5,3}$

There are 2^{\aleph_0} countable M_D . Each of their theories has 2^{\aleph_0} countable models.

Proof.

For every $A \subseteq \omega \setminus \{0\}$, consider 'I have a neighbour of degree n iff $n \in A$ '.

It turns out that M_D is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$ -sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to D(x, y) and call the result $\chi(x)$. Define $\mu(\varphi) \coloneqq \exists x \ (\neg D(x, x) \land \chi(x))$.

It turns out that M_D is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$ -sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to D(x, y) and call the result $\chi(x)$. Define $\mu(\varphi) \coloneqq \exists x \ (\neg D(x, x) \land \chi(x))$.

Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

It turns out that M_D is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$ -sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to D(x, y) and call the result $\chi(x)$. Define $\mu(\varphi) \coloneqq \exists x \ (\neg D(x, x) \land \chi(x))$.

Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

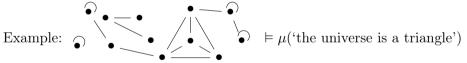
Lemma (Adam-Day, Howe, M.) $M_D \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$

It turns out that M_D is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$ -sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to D(x, y) and call the result $\chi(x)$. Define $\mu(\varphi) \coloneqq \exists x \ (\neg D(x, x) \land \chi(x))$.

Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.



Lemma (Adam-Day, Howe, M.)

 $M_D \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi) \Rightarrow A$ union of connected components of M_D satisfies φ .

The root of all evil

It turns out that M_D is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$ -sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to D(x, y) and call the result $\chi(x)$. Define $\mu(\varphi) \coloneqq \exists x \ (\neg D(x, x) \land \chi(x))$.

Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

Lemma (Adam-Day, Howe, M.)

 $M_D \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi) \Rightarrow A$ union of connected components of M_D satisfies φ .

Proof.

Add/remove a point to/from a graph and use the previous theorem.

The evil that graphs do

Corollary (Adam-Day, Howe, M.)

 $Th(M_D)$ interprets with parameters arbitrary finite fragments of ZFC. In particular it has SOP, TP₂, IP_k for all k, you name it.

Corollary (Adam-Day, Howe, M.) Th($\{M_D \mid M \vDash \mathsf{ZFA}\}$) is not complete.

The evil that graphs do

Corollary (Adam-Day, Howe, M.)

 $Th(M_D)$ interprets with parameters arbitrary finite fragments of ZFC. In particular it has SOP, TP₂, IP_k for all k, you name it.

```
Corollary (Adam-Day, Howe, M.)
Th(\{M_D \mid M \vDash \mathsf{ZFA}\}) is not complete.
```

Proof.

- 1. Rosser: there is a Π_1^0 arithmetical statement independent of ZFC/ZFA. Rosser's Theorem=Refined version of Gödel Incompleteness.
- 2. Friedman-Harrington: every Π_1^0 statement is equivalent to some $\operatorname{Con}(\theta)$.
- 3. Translate θ into a formula φ of graphs (graphs interpret anything!).
- 4. Consider $\mu(\varphi)$.

• Two players: Spoiler and Duplicator.

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.
- Turn *i*: Spoiler plays $a_i \in M$ or $b_i \in N$, Duplicator plays in the other structure.

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.
- Turn *i*: Spoiler plays $a_i \in M$ or $b_i \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\langle a_1, \ldots, a_n \rangle \cong \langle b_1, \ldots, b_n \rangle$.

Games •0000

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.
- Turn i: Spoiler plays $a_i \in M$ or $b_i \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\langle a_1, \ldots, a_n \rangle \cong \langle b_1, \ldots, b_n \rangle$.

Example

Duplicator has a winning strategy for the game of length 2; • - • - •

but not for the game of length 3.

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.
- Turn i: Spoiler plays $a_i \in M$ or $b_i \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\langle a_1, \ldots, a_n \rangle \cong \langle b_1, \ldots, b_n \rangle$.

Example

Duplicator has a winning strategy for the game of length 2; • -- •

but not for the game of length 3. Same for $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$.

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.
- Turn i: Spoiler plays $a_i \in M$ or $b_i \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\langle a_1, \ldots, a_n \rangle \cong \langle b_1, \ldots, b_n \rangle$.

Example

Duplicator has a winning strategy for the game of length 2; • -- •

but not for the game of length 3. Same for $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$.

Theorem (Ehrenfeucht)

Duplicator has a winning strategy iff $M \equiv_n N$ (formulas of quantifier depth n).

- Two players: Spoiler and Duplicator.
- Fix *relational* structures M, N and length n of the game.
- Turn i: Spoiler plays $a_i \in M$ or $b_i \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\langle a_1, \ldots, a_n \rangle \cong \langle b_1, \ldots, b_n \rangle$.

Example

Duplicator has a winning strategy for the game of length 2; • -- •

but not for the game of length 3. Same for $(\mathbb{Z}, <)$ and $(\mathbb{Q}, <)$.

Theorem (Ehrenfeucht)

Duplicator has a winning strategy iff $M \equiv_n N$ (formulas of quantifier depth n).

Fact

 \equiv_n -classes are characterised by a single formula. (The language is relational!)

Theorem (Adam-Day, Howe, M.) $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Theorem (Adam-Day, Howe, M.) $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Proof strategy.

• As the class is pseudoelementary, it is enough to work with M_D, N_D .

Theorem (Adam-Day, Howe, M.) $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.

Theorem (Adam-Day, Howe, M.) $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fra $\ddot{s}s\acute{e}$ game of length n. Show the Duplicator wins.
 - Take the union of the connected components of a_1, \ldots, a_{i-1} in M.

Theorem (Adam-Day, Howe, M.)

 $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
 - Take the union of the connected components of a_1, \ldots, a_{i-1} in M.
 - Inductively, they are \equiv_{n-i+2} -equivalent to those of b_1, \ldots, b_{i-1} in N.

Theorem (Adam-Day, Howe, M.)

 $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
 - Take the union of the connected components of a_1, \ldots, a_{i-1} in M.
 - Inductively, they are \equiv_{n-i+2} -equivalent to those of b_1, \ldots, b_{i-1} in N.
 - If the Spoiler plays in an already considered connected component, fine.

Theorem (Adam-Day, Howe, M.)

 $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
 - Take the union of the connected components of a_1, \ldots, a_{i-1} in M.
 - Inductively, they are \equiv_{n-i+2} -equivalent to those of b_1, \ldots, b_{i-1} in N.
 - If the Spoiler plays in an already considered connected component, fine.
 - Otherwise, recall the lemma: $M_D \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$.

Theorem (Adam-Day, Howe, M.)

 $A, B \vDash \operatorname{Th}(\{M_D \mid M \vDash \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
 - Take the union of the connected components of a_1, \ldots, a_{i-1} in M.
 - Inductively, they are \equiv_{n-i+2} -equivalent to those of b_1, \ldots, b_{i-1} in N.
 - If the Spoiler plays in an already considered connected component, fine.
 - Otherwise, recall the lemma: $M_D \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$.
 - Use the lemma to copy the ≡_{n-i+1}-class of the component of the new point.
 Since M_D, N_D are actual reducts, one is free to remove the witness of ∃ from μ(φ).

Theorem (Adam-Day, Howe, M.)

 $A, B \models \text{Th}(\{M_D \mid M \models \mathsf{ZFA}\})$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

- As the class is pseudoelementary, it is enough to work with M_D, N_D .
- Play the Ehrenfeucht-Fra $\ddot{s}s\dot{e}$ game of length n. Show the Duplicator wins.
 - Take the union of the connected components of a_1, \ldots, a_{i-1} in M.
 - Inductively, they are \equiv_{n-i+2} -equivalent to those of b_1, \ldots, b_{i-1} in N.
 - If the Spoiler plays in an already considered connected component, fine.
 - Otherwise, recall the lemma: $M_D \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$.
 - Use the lemma to copy the ≡_{n-i+1}-class of the component of the new point.
 Since M_D, N_D are actual reducts, one is free to remove the witness of ∃ from μ(φ).
- Works if natural numbers are standard. Otherwise more care is needed. Essentially, replace 'connected component' with 'what the model thinks is a connected component'.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Theorem (Adam-Day, Howe, M.)

No. No.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Theorem (Adam-Day, Howe, M.)

No. No.

Recall:

• Gaifman graph: join two points of a structure iff they are in relation.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Theorem (Adam-Day, Howe, M.)

No. No.

Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Theorem (Adam-Day, Howe, M.)

No. No.

Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.
- $\psi[n,r] \coloneqq \exists^{\geq n}$ pointed *r*-balls, far apart, satisfying the relativisation of $\psi(x)$ '.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Theorem (Adam-Day, Howe, M.)

No. No.

Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.
- $\psi[n,r] \coloneqq \exists^{\geq n}$ pointed *r*-balls, far apart, satisfying the relativisation of $\psi(x)$ '.
- Gaifman's Theorem: $M \equiv N$ iff they satisfy the same $\psi[n, r]$'s.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph? Same question for M_D .

Theorem (Adam-Day, Howe, M.)

No. No.

Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.
- $\psi[n,r] \coloneqq \exists^{\geq n}$ pointed *r*-balls, far apart, satisfying the relativisation of $\psi(x)$ '.
- Gaifman's Theorem: $M \equiv N$ iff they satisfy the same $\psi[n, r]$'s.

Proof for M_D .

 M_D has a connected component of infinite diameter. Build N as disconnected pieces satisfying the correct $\psi[1, r]$'s. Each has finite diameter.

Question

- $M_{SD} \equiv N$, both countable. Is N an SD-graph?
- The same trick won't work: M_{SD} is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of \exists^{∞} , Chatzidakis-Pillay does not apply.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph?

The same trick won't work: M_{SD} is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of \exists^{∞} , Chatzidakis-Pillay does not apply.

Theorem (Hanf)

 $M \equiv_n N$ by counting 3ⁿ-balls provided their size is uniformly bounded.

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph?

The same trick won't work: M_{SD} is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of \exists^{∞} , Chatzidakis-Pillay does not apply.

Theorem (Hanf)

 $M \equiv_n N$ by counting 3^n -balls provided their size is uniformly bounded.

proof of Hanf's Theorem: back-and-forth system I_n, \ldots, I_0

$$I_j \coloneqq \{a_1, \dots, a_k \mapsto b_1, \dots, b_k \mid k \le n - j, B(3^{j-1}/2, a_1, \dots, a_k) \cong B(3^{j-1}/2, b_1, \dots, b_k)\}$$

Question

 $M_{SD} \equiv N$, both countable. Is N an SD-graph?

The same trick won't work: M_{SD} is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of \exists^{∞} , Chatzidakis-Pillay does not apply.

Theorem (Hanf)

 $M \equiv_n N$ by counting 3^n -balls provided their size is uniformly bounded.

Answer.

Let N be M_{SD} without the connected components of infinite diameter. Add a twist to the proof of Hanf's Theorem: back-and-forth system I_n, \ldots, I_0

$$I_j := \{a_1, \dots, a_k \mapsto b_1, \dots, b_k \mid k \le n - j, B(3^{j-1}/2, a_1, \dots, a_k) \cong B(3^{j-1}/2, b_1, \dots, b_k)\}$$

where the isomorphisms are in L_{SD} but the balls are with respect to L_D . To show back-and-forth, write suitable flat systems in M.

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the M_D 's.

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

- 1. Axiomatise the theory of the M_D 's.
- 2. Axiomatise the theory of the M_{SD} 's.

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them. Open Problems

- 1. Axiomatise the theory of the M_D 's.
- 2. Axiomatise the theory of the M_{SD} 's.
- 3. Characterise the completions of the latter.

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

- 1. Axiomatise the theory of the M_D 's.
- 2. Axiomatise the theory of the M_{SD} 's.
- 3. Characterise the completions of the latter.
- 4. ZFA with Infinity replaced by its negation? Problem: transitive closure.

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

- Open Problems
 - 1. Axiomatise the theory of the M_D 's.
 - 2. Axiomatise the theory of the M_{SD} 's.
 - 3. Characterise the completions of the latter.
 - 4. ZFA with Infinity replaced by its negation? $_{\rm Problem:\ transitive\ closure.}$

Thanks for your attention!

Want to see what was swept under the rug?

Rieger-Bernays permutation models

Proposition (Adam-Day, Howe, M.)

Let G be a graph in $M \models \mathsf{ZFC}$. There is $N \models \mathsf{ZFC} \setminus \{\text{Foundation}\}\$ such that N_D is isomorphic to G plus infinitely many isolated points. In particular M_S can have an arbitrary number of points with loops.

Proof.

WLOG dom $G = \kappa$. Define $N \vDash x \in y \iff M \vDash x \in \pi(y)$, where π is the permutation swapping $a_i \coloneqq \kappa \setminus \{i\}$ with $b_j \coloneqq \{a_i \mid G \vDash R(i, j)\}$. Then

$$N \vDash a_i \in a_j \iff M \vDash a_i \in \pi(a_j) = b_j \iff G \vDash R(i,j)$$

and by choice of a_i and b_i there are no other *D*-edges. It is an old result that $N \models \mathsf{ZFC} \setminus \{\mathsf{Foundation}\}$.

