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Abstract. We investigate the asymptotic behavior of the SU(2)-Yang–Mills–Higgs energy
E(Φ, A) =

∫
M

|dAΦ|2 + |FA|2 in the large mass limit, proving convergence to the codimension-
three area functional in the sense of De Giorgi’s Γ-convergence. More precisely, for a compact
manifold with boundary M and any family of pairs Φm ∈ Ω0(M ; su(2)) and Am ∈ Ω1(M ; su(2))
indexed by a mass parameter m → ∞, satisfying

E(Φm, Am) ≤ Cm and lim
m→∞

1

m

∫
M

(m− |Φm|)2 = 0,

we prove that the (n− 3)-currents dual to 1
2πm

tr(dAmΦm ∧ FAm) converge subsequentially to
a relative integral (n− 3)-cycle T of mass

(0.1) M(T ) ≤ lim inf
m→∞

1

4πm
E(Φm, Am),

and show conversely that any integral (n − 3)-current T with [T ] = 0 ∈ Hn−3(M,∂M ;Z)
admits such an approximation, with equality in (0.1). In the special case of pairs (Φm, Am)
satisfying the generalized monopole equation ∗dAmΦm = FAm ∧ Θ for a calibration form
Θ ∈ Ωn−3(M), we deduce that the limit ν = limm→∞

1
2πm

|dAmΦm|2 of the Dirichlet energy
measures satisfies ν ≤ |T |, with equality if and only if T is calibrated by Θ, giving evidence
for predictions of Donaldson–Segal in the settings of G2-manifolds and Calabi–Yau 3-folds.
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1. Introduction

Following breakthroughs by Taubes [35], Tian [36] and others in the late 1990s, interactions
between gauge theory and submanifold geometry have played a central role in the development
of gauge theory over the last quarter century. In some settings, as in [36], minimal submanifolds
arise as possible degenerations at the boundary of some gauge-theoretic moduli space, but in
others, as in [35], one finds a robust dictionary between solutions of certain gauge-theoretic
PDEs and distinguished submanifolds by passing to adiabatic limits.

On the PDE side, dictionaries of the latter kind have attracted considerable attention since
the 1970s, when De Giorgi’s school began to explore a correspondence between semilinear scalar
equations and minimal hypersurfaces [23, 22], which in recent years has been used to obtain some
striking results in the min-max theory for minimal surfaces and geodesics [16, 15, 6, 7]. Since
the 1990s, similar relationships have been found between minimal submanifolds of codimension
two and elliptic systems related to the Ginzburg–Landau model of superconductivity [28, 20,
19, 4], with a particularly satisfying dictionary in the case of the self-dual U(1)-Higgs equations
[27, 26]. We note in particular that the codimension-two concentration phenomena in [27,
26] and [35] are closely related, with solutions of either the second order self-dual U(1)-Higgs
equations or the perturbed Seiberg–Witten equations resembling solutions of the classical
vortex equations on R2 in normal planes to the concentration set at generic points.

In the search for analogous phenomena in codimension three, it is natural to replace the
two-dimensional vortex equations with their nonabelian cousin on 3-manifolds: the Bogomolnyi
monopole equation, with structure group SU(2). For the trivial SU(2)-bundle over R3, a
monopole is a pair (Φ, A) consisting of a section Φ of the adjoint bundle su(2) × R3 and a
connection A ∈ Ω1(R3, su(2)) solving the Bogomolnyi equation

(1.1) ∗dAΦ = ±FA.

Like the vortex equations, the Bogomolnyi equation arises as a special case of the instanton
equations on four-manifolds, describing translation-invariant instantons of the form Φ dt+A
on R× R3. Variationally, monopoles are minimizers of the Yang-Mills-Higgs energy

E(Φ, A) :=

∫
R3

|dAΦ|2 + |FA|2,

and in fact are the only stable, finite-energy solutions of the Euler–Lagrange equations

(1.2) d∗AdAΦ = 0, d∗AFA + [Φ, dAΦ] = 0

for the Yang–Mills–Higgs energy on R3 [17, 34]. As discussed in [17, 11], the energy of any
finite-energy monopole (Φ, A) on R3 is determined by the product

E(Φ, A) = 4πm|k|

of the (well-defined) limit

m = lim
|x|→∞

|Φ(x)|

known as the mass, and the charge

k = lim
r→∞

deg(Φ/|Φ|, S2
r (0)) ∈ Z.
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In particular, after normalizing by the mass, the energy 1
4πmE(Φ, A) is quantized, and the

energy measures

1

4πm
(|dAΦ|2 + |FA|2) dvolg = ± 1

2πm
tr(dAΦ ∧ FA) dvolg

tend to concentrate at points in the large mass limit m→ ∞; see [13] for a detailed analysis of
the large-mass asymptotics of monopoles on general asymptotically conical 3-manifolds.

In higher dimensions, analogs of the monopole equation (1.1) arise naturally in certain
manifolds with special holonomy, most notably in (6-dimensional) Calabi–Yau 3-folds and
(7-dimensional) G2-manifolds, where solutions are again critical points for the Yang–Mills–Higgs
energy

E(Φ, A) =

∫
M

|dAΦ|2 + |FA|2

with respect to compact variations (see, e.g., [24, Section 1.3]). In [8], Donaldson and Segal
suggest that suitable counts of these generalized monopoles on noncompact G2-manifolds
or Calabi–Yau 3-folds could provide meaningful enumerative invariants, similar to classic
gauge-theoretic invariants of lower-dimensional manifolds. Moreover, they conjecture that in
the large mass limit these invariants can be identified with certain counts of special Lagrangians
in Calabi–Yau 3-folds or coassociatives in G2-manifolds (weighted by a count of Fueter sections
describing first-order asymptotics for monopoles near the concentration set), providing a kind of
nonabelian, codimension-three counterpart to the correspondence between Seiberg–Witten and
Gromov invariants in symplectic four-manifolds. Starting with Oliveira’s thesis [24], the last
decade has seen some interesting progress on the Donaldson–Segal program: see, for instance,
[25, 30, 12, 9] and references therein. Nonetheless, at the moment the central conjectures
remain widely open.

Motivated in part by the Donaldson–Segal picture and drawing inspiration from the dictionary
between the self-dual U(1)-Higgs equations and minimal submanifolds of codimension two, we
turn now to the following question.

Question 1.1. Is there a robust correspondence between minimal submanifolds of codimension
three and solutions of the SU(2)-Yang–Mills–Higgs equations in the large mass limit? More
broadly, is there a correspondence between the Yang–Mills–Higgs energies and the codimension-
three area functional, at the level of Γ-convergence or convergence of gradient flows, in suitable
adiabatic limits?

What follows is the first part of a positive answer, proving that the SU(2)-Yang–Mills–Higgs
energies converge in a natural sense to the mass functional for (n− 3)-cycles in adiabatic limits.
Morally speaking, the precise result stated below may be compared with the results of Modica–
Mortola for the Allen–Cahn functionals [23], Jerrard–Soner and Alberti–Baldo–Orlandi for the
ungauged Ginzburg–Landau equations [19, 2], and the authors for the self-dual U(1)-Higgs
energies [26], but at a technical level both the statement and its proof are necessarily rather
different from all of these.

To illustrate the geometric content of the Γ-convergence result, we show that area-minimizing
(n− 3)-cycles can be approximated locally by minimizers (or minimizing sequences) for the
SU(2)-Yang–Mills–Higgs energy; in other words, Plateau’s problem in codimension three can
be solved (however impractically) by gauge-theoretic means. As a further consequence of our
results, we show that, for generalized monopoles of the kind relevant to the Donaldson–Segal
program, the Dirichlet component |dAΦ|2 of the energy measure always concentrates in the
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large mass limit along the support of an integral (n− 3)-cycle; moreover, this cycle is calibrated,
e.g., coassociative in the G2 setting, whenever a certain integral balancing condition between
the Dirichlet and Yang–Mills components of the energy measure holds near the concentration
set.

1.1. Γ-convergence of the rescaled Yang–Mills–Higgs energies.
Let (Mn, g) be a compact Riemannian manifold, possibly with boundary, and let P → M
be a principal SU(2)-bundle over M , with associated adjoint bundle E → M . Since we are
primarily concerned with local phenomena in this paper, let us assume for simplicity that
P = SU(2)×M is the trivial bundle, so that E = su(2)×M . Fixing a trivialization, we then
identify connections on P with su(2)-valued one-forms A ∈ Ω1(M ; su(2)), acting on sections
Φ :M → su(2) of the adjoint bundle by

dAΦ = dΦ+ [A,Φ],

with curvature given by

FA = dA+
1

2
[A ∧A].

Throughout the paper, we identify SU(2) with the 3-sphere of unit quaternions and su(2) with
the imaginary quaternions, equipped with the standard inner product with respect to which
|i| = |j| = |k| = 1. See Section 2 below for further discussion of our notation and conventions,
and comparison with other common conventions in the literature.

For each ϵ > 0, we define the ϵ-Yang–Mills–Higgs energy of a pair (Φ, A) by

Eϵ(Φ, A) :=

∫
M

1

ϵ
|dAΦ|2 + ϵ|FA|2.

Note that the energies Eϵ are related to the standard (ϵ = 1) Yang-Mills-Higgs energies via two
different scalings: first, with respect to the rescaled metric gϵ = ϵ−2g, we see that

Egϵ1 (Φ, A) = ϵ3−nEgϵ (Φ, A);

on the other hand, fixing the metric g but rescaling the section by taking Ψ = ϵ−1Φ, we see
that

Eϵ(Φ, A) = ϵE1(Ψ, A).

The latter observation is particularly relevant when recasting the ϵ→ 0 asymptotics of the
energies Eϵ in the language of large mass limits often found in the gauge theory literature.

To any section Φ :M → su(2) and connection A ∈ Ω1(M ; su(2)), we associate a real-valued
3-form

Z(Φ, A) := 2ℜ(dAΦ ∧ FA) ∈ Ω3(M),

where we denote by ℜ(·) the real part of a quaternion-valued form. For pairs (Φ, A) on R3 with
suitable decay at infinity and |Φ(x)| → 1 as |x| → ∞, note that this is precisely the three-form
whose integral recovers 4π times the integer charge of (Φ, A) [17, 11]. In any manifold, a simple
computation (see Proposition 2.2 below) gives the pointwise bound

|Z(Φ, A)| ≤ 1

ϵ
|dAΦ|2 + ϵ|FA|2,

and in particular ∫
M

|Z(Φ, A)| ≤ Eϵ(Φ, A).
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On a 3-manifold, equality holds when (Φ, A) satisfies the rescaled Bogolmonyi equation
∗dAΦ = ±ϵFA, in which case Z(Φ, A) = ±(ϵ−1|dAΦ|2+ ϵ|FA|2) simply recovers the Yang–Mills–
Higgs energy density.

Our first main result, giving the lim inf part of the Γ-convergence statement, shows that
for a family of pairs (Φϵ, Aϵ) with bounded energy Eϵ(Φϵ, Aϵ) ≤ C and ∥1 − |Φϵ|∥L2 → 0
sufficiently fast as ϵ→ 0, the 3-forms Z(Φϵ, Aϵ) converge to an integral (n− 3)-cycle. To make
this convergence precise, note that Z(Φ, A) naturally defines an (n− 3)-current via

Ωn−3(M) ∋ α 7→
∫
M
Z(Φ, A) ∧ α.

Theorem 1.2. Given a sequence ϵj → 0, a sequence of smooth SU(2)-connections Aj and
sections Φj ∈ Γ(E) such that

lim inf
j→∞

Eϵj (Φj , Aj) <∞

and

(1.3) lim
j→∞

∫
M

(1− |Φj |)2

ϵj
= 0,

there exist an (n− 3)-current T , restricting to an integral cycle in the interior of M , and a
measure µ ∈ C0(M)∗ such that, along a subsequence,

Z(Φj , Aj)⇀
∗ 4πT

as (n− 3)-currents,

(ϵ−1
j |dAjΦj |2 + ϵj |FAj |2) dvolg ⇀∗ µ

in C0(M)∗, and the weight measure |T | = θHn−3 spt(T ) satisfies

(1.4) 4π|T | ≤ µ;

in particular,

4πM(T ) ≤ lim inf
j→∞

Eϵj (Φj , Aj).

Remark 1.3. Note that Theorem 1.2 only establishes the integrality of the limit current
T = limj→∞

1
4πZ(Φj , Aj) in the interior of M ; indeed, without additional assumptions, it

is not difficult to construct examples where, e.g., T is supported in ∂M and does not have
the structure of an integral (n− 3)-current. On the other hand, as we will see in Section 5
below, it is possible to guarantee that T is an integral (n− 3)-current on the full manifold with
boundary M by imposing additional natural assumptions on the boundary data ι∗∂M (Φϵ, Aϵ).

The hypothesis (1.3), providing a local, integral version of the ‘large mass’ assumption,
deserves some additional comment. First, note that for any sequence (Φj , Aj) with Eϵj (Φj , Aj) ≤
C we have ∫

M
|d|Φj ||2 ≤

∫
M

|dAjΦj |2 ≤ Cϵj

and, setting cj :=
1

|M |
∫
M |Φj |, the Poincaré inequality on M gives∫

M
|cj − |Φj ||2 ≤ Cϵj .
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Under the mild assumption that lim infj→∞ cj > 0, we can then normalize by Φ̃j := c−1
j Φj to

get a new bounded-energy sequence for which∫
M

|1− |Φ̃j ||2

ϵj
= O(1)

as j → ∞, and the assumption (1.3) simply strengthens this estimate from O(1) to o(1). To
see that the improvement from O(1) to o(1) is necessary, fix a function f ∈ C∞(M) and a
one-form α ∈ Ω1(M), and consider the family

Φϵ = (1 +
√
ϵf)i, Aϵ = i

α√
ϵ
;

it is easy to see that Eϵ(Φϵ, Aϵ) ≤ C and
∫
M (1− |Φϵ|)2 ≤ Cϵ, but Z(Φϵ, Aϵ) = 2df ∧ dα does

not concentrate to an (n− 3)-cycle as ϵ→ 0. On the other hand, for critical points of Eϵ, it is
straightforward to obtain estimates somewhat stronger than (1.3) in many natural settings, as
in the case of Theorem 1.6 below.

Conversely, we show that every integral (n− 3)-cycle can be approximated by a sequence of
pairs satisfying the hypotheses of Theorem 1.2 such that equality holds in (1.4), giving the
lim sup part of the Γ-convergence result.

Theorem 1.4. For every integral (n− 3)-current T such that spt(∂T ) ⊂ ∂M and [T ] = 0 ∈
Hn−3(M,∂M ;Z), there exists a family of smooth pairs (Φϵ, Aϵ) satisfying |Φϵ| ≤ 1,

Z(Φϵ, Aϵ)⇀
∗ 4πT

as (n− 3)-currents,

lim
ϵ→0

Eϵ(Φϵ, Aϵ) = 4πM(T ),

and ∫
M

(1− |Φϵ|)2

ϵ
≤ CM(T )ϵ→ 0.

The proof of Theorem 1.4 is similar in spirit to that of [26, Theorem 1.2(ii)] in the U(1)-Higgs
setting, with rescalings of the standard charge one Bogomolnyi–Prasad-Sommerfield monopole
in R3 playing a role analogous to that of the degree one vortex in [26].

Remark 1.5. Given a function δ : (0, 1) → (0, 1) satisfying

lim
ϵ→0

δ(ϵ)

ϵ
= lim

ϵ→0

ϵ2

δ(ϵ)
= 0

(e.g., δ(ϵ) = ϵ3/2), we can consider instead the perturbed Yang–Mills–Higgs functionals

Ẽδ(ϵ)ϵ (Φ, A) := Eϵ(Φ, A) +
1

δ(ϵ)

∫
M
(1− |Φ|2)2.

It is then easy to see that any family (Φϵ, Aϵ) with

Ẽδ(ϵ)ϵ (Φϵ, Aϵ) ≤ C

automatically satisfies the hypotheses of Theorem 1.2, while the recovery sequence (Φϵ, Aϵ)
described in Theorem 1.4 satisfies

lim
ϵ→0

Ẽδ(ϵ)ϵ (Φϵ, Aϵ) = lim
ϵ→0

Eϵ(Φϵ, Aϵ).
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In particular, Theorem 1.2 and Theorem 1.4 together show that the functionals Ẽ
δ(ϵ)
ϵ Γ-converge

to the (n− 3)-mass functional in the usual sense, without any additional hypotheses.
From a gauge-theoretic perspective, these perturbed functionals are not quite as interesting

as the canonical Yang–Mills–Higgs energies Eϵ, losing their connection to monopoles and
instantons. On the the other hand, from a variational perspective, it may be of interest to note

that the perturbed functionals Ẽ
δ(ϵ)
ϵ are expected to admit nontrivial, finite-energy critical

points on compact manifolds without boundary (e.g., by a variant of the construction in [31,
Section 2] or [27, Section 7]), in contrast to the usual energies Eϵ, whose finite-energy critical
points on closed manifolds consist only of parallel sections and Yang–Mills connections.

As a concrete illustration of the convergence phenomenon captured by Theorems 1.2 and
1.4, we observe next that one can solve area-minimization problems in codimension three via
variational methods for the SU(2)-Yang–Mills–Higgs energies.

Theorem 1.6. Let Γn−4 ⊂ ∂M be any smooth (n− 4)-dimensional submanifold of ∂M such
that [Γ] = 0 ∈ Hn−4(M ;Z). Then there exists a family of smooth pairs Ψϵ : ∂M → su(2) and
Bϵ ∈ Ω1(∂M ; su(2)) such that the following holds: letting

αϵ(Ψϵ, Bϵ) := inf{Eϵ(Φ, A) | ι∗∂M (Φ, A) = (Ψϵ, Bϵ)},
we have

lim
ϵ→0

αϵ(Ψϵ, Bϵ) = 4π inf{M(T ) | T integral with ∂T = Γ}

and, for any sequence of pairs (Φϵ, Aϵ) satisfying

ι∗∂M (Φϵ, Aϵ) = (Ψϵ, Bϵ) and Eϵ(Φϵ, Aϵ) ≤ αϵ(Ψϵ, Bϵ) + o(1),

we have

Z(Φϵ, Aϵ)⇀
∗ 4πT,

where the integral (n− 3)-current T is a mass-minimizing extension of Γ.

Roughly speaking, Theorem 1.6 shows that pairs (Φϵ, Aϵ) minimizing Eϵ with respect to
boundary data concentrating along a prescribed codimension-four cycle Γ converge to an
(n− 3)-current T minimizing area among all currents with boundary ∂T = Γ. However, there
is a subtle technical point which prevents us from stating the theorem in this form: in high
dimensions, it is not clear a priori in what sense a minimizing pair exists, or what kind of
partial regularity such a pair should enjoy. This is very closely related to the existence and
partial regularity problem for minimizers of the Yang-Mills energy in supercritical dimension;
we refer the reader to the recent paper of Caniato–Rivière for further discussion of these issues
and recent progress in dimension five [5].

1.2. Large mass limits of generalized monopoles and general critical points.
Again, let P = SU(2)×M be the trivial SU(2)-bundle over a compact Riemannian manifold
(Mn, g) with boundary ∂M . Following [24, Section 1.3], suppose now that M carries a
calibration (n− 3)-form, i.e., a closed (n− 3)-form Θ with comass one at every point, and call
a pair (Φ, A) a Θ-monopole if

(1.5) ∗dAΦ = FA ∧Θ,

or more generally, after rescaling Φ,

(1.6) ∗dAΦ = ϵFA ∧Θ
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for some ϵ > 0.
Of particular interest in light of the Donaldson–Segal program are the cases of G2-monopoles,

where (M7, g) is a G2-manifold and Θ is the coassociative 4-form, and Calabi–Yau monopoles
on a Calabi–Yau 3-fold (M6, g), where Θ is the real part of the holomorphic volume form and
FA ∧ ω2 = 0 for the Kähler form ω (see, e.g., [24, Chapters 3–4]). In [8], Donaldson and Segal
suggest that G2-monopoles on a complete, noncompact G2-manifold M with a well-defined
mass at infinity

m = lim
|x|→∞

|Φ(x)|

should concentrate as m→ ∞ along coassociative submanifolds, which are four-dimensional
cycles calibrated by Θ, and predict an analogous large-mass convergence of Calabi–Yau
monopoles to special Lagrangian submanifolds in the Calabi–Yau setting, as has been confirmed
by Oliveira in some special cases [24].

Equivalent to the study of large-mass asymptotics for the equation (1.5), one can consider
instead the ϵ → 0 behavior of solutions to (1.6) satisfying |Φ| → 1 at infinity. Restricting
attention to compact subsets of complete G2-manifolds or Calabi–Yau 3-folds, the conjectural
picture of Donaldson and Segal suggests the following local question.

Question 1.7. In the setting of Theorem 1.2, suppose in addition that the pairs (Φj , Aj)
solve the ϵj-monopole equation (1.6). Under what conditions does it follow that the limiting
(n− 3)-current T is calibrated by Θ? In particular, does this always hold for G2-monopoles or
Calabi–Yau monopoles?

As an immediate application of Theorem 1.2, we have the following.

Corollary 1.8. In addition to the assumptions of Theorem 1.2, suppose that (Φj , Aj) satisfies
the generalized monopole equation

(1.7) ∗dAjΦj = ϵjFAj ∧Θ

with respect to a fixed calibration form Θ ∈ Ωn−3(M). Writing

ν := lim
j→∞

(ϵ−1
j |dAjΦj |2 + ϵj |FAj ∧Θ|2) dvolg = lim

j→∞
2ϵ−1
j |dAjΦj |2 dvolg,

the weight measure |T | of the limiting integral (n− 3)-current T satisfies

(1.8) ν ≤ 4π|T |,
with equality on M \ ∂M if and only if T is calibrated by Θ. In particular, in the interior of
M , ν is always (n− 3)-rectifiable, and if ν = µ then 1

4πµ = |T | = 1
4πν is the weight measure of

a calibrated (n− 3)-current.

Proof. The bound (1.8) is a straightforward consequence of Theorem 1.2, together with the
observation that

Z(A,Φ) ∧Θ = 2ℜ(dAΦ ∧ FA ∧Θ)

= 2ϵ−1
j ℜ(dAΦ ∧ ∗dAΦ)

= 2ϵ−1
j |dAΦ|2

for any solution (Φ, A) of (1.7). In particular, passing to limits as j → ∞ gives∫
M
χdν = 4π⟨T, χΘ⟩
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for any test function 0 ≤ χ ∈ C0(M), and since Θ is a calibration, we know that∫
M
χdν = 4π⟨T, χΘ⟩ ≤ 4π

∫
M
χd|T |,

with equality for all χ ∈ C0
c (M \ ∂M) if and only if T is calibrated by Θ (on M \ ∂M).

Moreover, since 4π|T | ≤ µ by Theorem 1.2, we deduce that if µ = ν then µ = 4π|T | = ν, and
T must be calibrated. □

For G2-monopoles in asymptotically conical G2 manifolds, the 4-rectifiability of the ‘interme-
diate energy’ measure ν was previously proved in [10] via PDE methods under slightly different
hypotheses, including the additional assumption that |FAj |2 − |FAj ∧Θ|2 is uniformly bounded
in L∞. In fact, if we impose such a bound alongside the hypotheses of Corollary 1.8, it follows
immediately that

µ− ν = lim
j→∞

ϵj(|FAj |2 − |FAj ∧Θ|2) dvolg = 0,

and therefore Corollary 1.8 gives that 1
4πν = |T | = 1

4πµ is indeed calibrated, and in particular
coassociative, in the case of G2-monopoles. However, it is unclear to what extent this L∞

bound on |FAj |2 − |FAj ∧Θ|2 can be justified in general settings of interest.

More generally, the question of balancing between the terms ϵ−1|dAΦ|2 and ϵ|FA|2, at least
in an integral sense at small scales, is central to understanding concentration phenomena for
critical points of Eϵ in the ϵ→ 0 limit. Indeed, standard computations show that, on small
balls Br(x) ⊂M , critical pairs (Φ, A) for Eϵ satisfy

d

dr

(
r3−n

∫
Br(x)

(ϵ−1|dAΦ|2 + ϵ|FA|2)

)
≳ r2−n

∫
Br(x)

(ϵ−1|dAΦ|2 − ϵ|FA|2).

Thus, controlling
∫
Br
ϵ|FA|2 by

∫
Br
ϵ−1|dAΦ|2 up to smaller terms is essential for upgrading the

obvious codimension-four monotonicity of energy to a sharper codimension-three monotonicity
in settings where codimension-three concentration is expected. In the Allen–Cahn and U(1)-
Higgs settings, analogous balancing results between different components of the energy can be
proved in great generality at the level of pointwise estimates [21, 27], but simple examples
show that the same cannot be expected for SU(2)-Yang–Mills–Higgs pairs. In particular, the
degenerate case where Φ = 0 and A is a Yang–Mills connection shows that the codimension-four
energy growth is optimal for general critical pairs, without some largeness condition on the
Higgs field Φ.

Even with a largeness condition on Φ, one also has to contend with the ‘abelian’ case
where |Φ| = 1 and dAΦ = 0. In this case, the curvature FA reduces to a real-valued harmonic
two-form: indeed, locally and up to a change of gauge, Φ = i and A = αi, so that FA = dαi
and d∗dα = 0. In this case |FA|2 could be large a priori, but is controlled pointwise by the
Yang–Mills energy, adding at worst a diffuse component to the limiting energy measure,
reminiscent of the situation for the (ungauged) complex Ginzburg–Landau equations described
in [31, Remark 1.2]. With these caveats in mind, the following seems like the natural local
question, which we hope to address in future work.

Question 1.9. Let P →Mn be the trivial SU(2)-bundle over a compact Rimannian manifold
with boundary of dimension n ≥ 4, and let (Φϵ, Aϵ) be a family of critical pairs for the
SU(2)-Yang–Mills–Higgs energies Eϵ such that |Φϵ| ≤ 1, Eϵ(Φϵ, Aϵ) ≤ C, and

∫
M (1− |Φϵ|)2
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vanishes sufficiently fast. In the interior of M , does the limiting energy measure

µ = lim
ϵ→0

(ϵ−1|dAϵΦϵ|2 + ϵ|FAϵ |2) dvolg

necessarily decompose as the sum µ = |V |+ |h|2 dvolg of the weight of a stationary, rectifiable
(n− 3)-varifold V and the energy density of a harmonic 2-form h?

An affirmative answer would certainly provide the tools required to prove that ν = 4π|T | in
the setting of Corollary 1.8 for G2-monopoles or Calabi–Yau monopoles, confirming that T is
indeed coassociative or special Lagrangian, respectively.

Note that in Question 1.9 we have not made reference to the problem of integrality, i.e.,
whether the density of the (n − 3)-varifold V takes values in 4πN |V |-almost everywhere.
Indeed, integrality cannot be expected in general, in light of Taubes’s construction of entire
Yang–Mills–Higgs pairs of finite energy on R3 that are not monopoles, whose energy need not
take values in 4πN [32, 33]. On the other hand, these non-monopole pairs on R3 are necessarily
unstable by [34], and their trivial pullback to R3 × Rk must have infinite Morse index for any
k ≥ 1, suggesting the following refinement of Question 1.9.

Question 1.10. In the situation of Question 1.9, assuming a positive answer, suppose moreover
that the pairs (Φϵ, Aϵ) have uniformly bounded Morse index as critical points of Eϵ. Is 1

4πV
then an integral varifold?

Remark 1.11. In the base dimension n = 3, one needs to replace the assumption of bounded
Morse index with stability; in this case, a positive answer to Question 1.10 seems to follow
from the analysis of [13] together with [34].

Acknowledgements. The authors thank Gonçalo Oliveira and Daniel Fadel for helpful
exchanges about monopoles and comments on an earlier draft of this paper. We also thank
Riccardo Caniato and Tristan Rivière for answering questions about their work [5]. D.P.
acknowledges the support of the AMS-Simons travel grant. During the completion of this
project, A.P. was partially supported by ERC grant 101165368, while D.S. was partially
supported by NSF grant DMS 2404992 and the Simons Foundation award MPS-TSM-00007693.

2. Preliminaries, notation, and some key identities

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3, and consider the trivial principal
SU(2)-bundle P = SU(2)×M . We denote by E the associated adjoint bundle of P , i.e., the
vector bundle over M given by

E = P ×Ad su(2) ∼= su(2)×M,

where Ad: SU(2) → GL(su(2)) is the usual adjoint representation, given by T 7→ γTγ−1 for
every γ ∈ SU(2), T ∈ su(2). Note that, as a manifold and Lie group, SU(2) is the same as the
3-sphere S3, viewed as a subset of the quaternions S3 ⊂ H. For convenience, we will henceforth
identify SU(2) with quaternions of unit norm (sometimes called versors), i.e., the compact
symplectic group Sp(1).

Coherently, the Lie algebra su(2) will be identified with the imaginary quaternions ℑ(H),
i.e.,

su(2) ∼= ℑ(H) = {ai+ bj+ ck | (a, b, c) ∈ R3},
where

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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Although we do not need an explicit identification, a standard one is given by the Pauli matrices

ai+ bj+ ck ↔ a

(
i 0
0 −i

)
+ b

(
0 −1
1 0

)
+ c

(
0 i
i 0

)
.

Under this identification, we equip su(2) with the Euclidean inner product

⟨u, v⟩ := ℜ(uv) = −ℜ(uv),
so that for any imaginary quaternion u ∈ ℑ(H) we have the useful identity

u2 = −|u|2.

Remark 2.1. In many sources, such as the monograph [17], the inner product on su(2) is taken
to be ⟨a, b⟩JT := −2 tr(ab), which agrees with the one used here multiplied by a factor 4 (after
the previous identification). Thus, for instance, the boundary condition |Φ|JT → 1 at infinity
becomes |Φ| → 1

2 in our convention, and the Yang–Mills–Higgs energies differ by a constant
factor. Of course, it is easy to translate between the two conventions, but some care is needed
when comparing results in [17] and the formulations here.

2.1. Conventions for su(2)-valued and H-valued forms.
In general, given a vector bundle E →M and a connection ∇, recall that we can extend it to
a differential operator

d∇ : Ωk(M ;E) → Ωk+1(M ;E)

by declaring that d∇ := ∇ on 0-forms (i.e., sections Γ(E) = Ω0(M ;E)) and that, for a pure
tensor sη = s⊗ η (with s a section and η a real-valued k-form), we have

d∇(sη) := ∇s ∧ η + s dη.

A standard computation, which may be taken as the definition of the curvature, shows that

d∇ ◦ d∇(ω) = F∇ ∧ ω,
where F∇ ∈ Ω2(M ; End(E)) is the curvature of ∇ and the latter wedge product is defined by
the rule F∇ ∧ (sη) := (F∇s) ∧ η.

If E has structure group G and is modeled on its Lie algebra g (with the adjoint action of G
on g), then we can write ∇s = ds+ [A, s] in a local trivialization, for a g-valued one-form A.
For general g-valued forms ω, ζ, we define [ω ∧ ζ] by requiring that, in a local trivialization,

[sη ∧ tθ] = [s, t]η ∧ θ,
where s, t take values in g, while η and θ are differential forms on M . If ω has order k and ζ
has order ℓ, then an application of the Jacobi identity gives

d∇[ω ∧ ζ] = [(d∇ω) ∧ ζ] + (−1)k[ω ∧ (d∇ζ)],

but note carefully that
[ω ∧ ζ] = (−1)kℓ+1[ζ ∧ ω].

In the same local trivialization, we compute that

d∇ω = dω + [A ∧ ω].
In particular, if s is a constant section here (namely, ds = 0), then

F∇s = d∇(d∇s) = d∇[A, s] = [d∇A, s]− [A, d∇s] = [dA+ [A ∧A], s]− [A ∧ [A, s]].

Since we also have d∇[A, s] = d[A, s] + [A ∧ [A, s]] = [dA, s] + [A ∧ [A, s]], we obtain

[[A ∧A], s]− [A ∧ [A, s]] = [A ∧ [A, s]],
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and thus [A ∧ [A, s]] = 1
2 [[A ∧A], s], giving

F∇ = dA+
1

2
[A ∧A] i.e., F∇s =

[
dA+

1

2
[A ∧A], s

]
,

hence, d∇A = F∇ + 1
2 [A ∧ A]. Applying d∇ and using the fact that [A ∧ [A ∧ A]] = 0, one

recovers the classic Bianchi identity d∇F∇ = 0.
In the setting of this paper, where we deal with a trivial bundle for simplicity, we have sections

and forms taking values in the imaginary quaternions ℑ(H), so that our su(2)-valued forms
Ωk(M ; su(2)) can be regarded as belonging to the larger space Ωk(M ;H) of quaternion-valued
forms. On Ωk(M ;H)× Ωl(M ;H), we can define another natural wedge product by

sη ∧ tθ = (st)η ∧ θ ∈ Ωk+l(M ;H)

and, since [s, t] = st− ts, it follows that

[ω ∧ ζ] = ω ∧ ζ − (−1)klζ ∧ ω

for ω ∈ Ωk(M ; su(2)) and ζ ∈ Ωl(M ; su(2)).
In particular, [A ∧A] = 2A ∧A, giving

F∇ = dA+A ∧A.

Also, denoting by ℜ : Ωk(M ;H) → Ωk(M) the real part of a quaternion-valued form, so that
ℜ(β) = 0 if and only if β ∈ Ω∗(M ; su(2)), a straightforward computation yields the identities

ℜ(ω ∧ ζ) = (−1)kℓℜ(ζ ∧ ω)

and

(2.1) dℜ(ω ∧ ζ) = ℜ(d∇ω ∧ ζ) + (−1)kℜ(ω ∧ d∇ζ)

whenever ω ∈ Ωk(M ; su(2)) and ζ ∈ Ωl(M ; su(2)). As a consequence, for any ϕ ∈ Ω0(M ; su(2)),
we have

dℜ(ϕA) = ℜ(d∇ϕ ∧A) + ℜ(ϕd∇A) = ℜ((dϕ+ [A, ϕ]) ∧A) + ℜ(ϕ(F∇ +A ∧A)).

Now we can compute that ℜ([A, ϕ] ∧A) = −2ℜ(ϕA ∧A), giving

(2.2) dℜ(ϕA) = ℜ(dϕ ∧A) + ℜ(ϕF∇)−ℜ(ϕA ∧A).

We could have reached the same conclusion also by writing directly dA = F∇ −A ∧A. We will
denote by A(P ) the space of smooth connections on a principal bundle P .

2.2. The Yang–Mills–Higgs functionals and Z(Φ,A).
Let us focus on the case of trivial bundles P = SU(2)×M and E = su(2)×M and, given
∇ ∈ A(P ), let us identify it with the corresponding one-form A ∈ Ω1(M ; su(2)), writing
∇ = dA in computations.

Given a smooth section Φ ∈ Γ(E) and a smooth connection A ∈ A(P ) on P , for any
ϵ ∈ (0, 1), consider the SU(2)-Yang–Mills–Higgs functionals

Eϵ(Φ, A) :=

∫
M

(
1

ϵ
|dAΦ|2 + ϵ|FA|2

)
dvolg =

∫
M
eϵ(Φ, A) dvolg.
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Note that, cf. the previous section, dAΦ = ∇Φ = dΦ+ [A,Φ] in a local trivialization. Although
we do not make use of them in what follows, we observe that the Euler–Lagrange equations for
Eϵ are given by

(2.3)

{
d∗AdAΦ = 0,

ϵ2d∗AFA + [Φ, dAΦ] = 0,

where for α ∈ Ωk(M ;E) we have

(dAα)(X0, X1, . . . , Xk) =
k∑
j=1

(−1)j(∇Xjα)(X0, . . . , X̂j , . . . , Xk),

where X̂j means that Xj has been omitted, and its adjoint

(d∗Aα)(X1, X2, . . . , Xk−1) = −
n∑
j=1

(∇ejα)(ej , X1, . . . , Xk−1),

for an orthonormal basis {ej}nj=1 of TpM at p.

Next, for any pair A ∈ A(P ), Φ ∈ Γ(M ; su(2)), we introduce the three-form

(2.4) Z(Φ, A) := 2ℜ(dAΦ ∧ FA).
Throughout the paper, we identify Z(Φ, A) with an (n− 3)-current via the assignment

(2.5) ⟨Z(Φ, A), η⟩ :=
∫
M
Z(Φ, A) ∧ η,

for all η ∈ Ωn−3(M). We observe next that Z(Φ, A) is bounded pointwise by the energy density
eϵ(Φ, A).

Proposition 2.2. At each point we have

|Z(Φ, A)| ≤ 2|dAΦ||FA| ≤
1

ϵ
|dAΦ|2 + ϵ|FA|2.

Remark 2.3. Given a 1-form α and a 2-form β with values in su(2), it is interesting to note
that the inequality |α ∧ β| ≤ |α||β| is false in general. Rather, we will show that the weaker
bound |ℜ(α ∧ β)| ≤ |α||β| holds. Alternatively, this subtlety could be avoided by replacing the
Euclidean norm on forms with the weaker comass norm, which would suffice to obtain the
desired mass bounds in the ϵ→ 0 limit.

Proof. Given p ∈M , let α := dAΦ(p) and β := FA(p). We claim that

(2.6) |ℜ(α ∧ β)|2 ≤ |α|2|β|2.
We fix an orthonormal basis {ea}na=1 at p and we denote

αa := α[ea], βab := β[ea, eb].

Since α can be seen as a linear map with values into a 3-dimensional space, we can choose the
basis in such a way that αa = 0 for a > 3. We compute that

(α ∧ β)[ea, eb, ec] = αaβbc − αbβac + αcβab.

Hence, by Cauchy–Schwarz, we have

|(α ∧ β)[e1, e2, e3]|2 ≤ |α|2
∑
b<c≤3

|βbc|2.
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Moreover, when b, c > 3, only the term αaβbc can be nonzero, and its squared norm equals the
corresponding term |αa|2|βbc|2 in the expansion of the right-hand side of (2.6).

Thus, it suffices to prove the bound∑
1≤a<b≤3

|ℜ(αaβbc)−ℜ(αbβac)|2 ≤

(
3∑

a=1

|αa|2
)(

3∑
b=1

|βbc|2
)

for any fixed c > 3. Setting γa := βac, we are left to show the inequality∑
a<b

|ℜ(αaγb)−ℜ(αbγa)|2 ≤
∑
a,b

|αa|2|γb|2,

where from now on we understand that indices vary only in {1, 2, 3}.
Since the left-hand side can be rewritten as 1

2

∑
a,b |ℜ(αaγb)−ℜ(αbγa)|2, it is not affected by

a change of the orthonormal basis {e1, e2, e3} (spanning the same three-dimensional subspace).
By the spectral theorem, we can then assume that {α1, α2, α3} is an orthogonal triple. Writing

αa = λaηa,

with λa ≥ 0 and {η1, η2, η3} an orthonormal basis of ℑ(H), and decomposing each γb as

γb =:
3∑

a=1

γa,bηa,

so that γa,b = ⟨γb, ηa⟩ = ℜ(ηaγb) = −ℜ(ηaγb), the claim becomes∑
a<b

|λaγa,b − λbγb,a|2 ≤ (λ21 + λ22 + λ23)
∑
a,b

|γa,b|2.

By Cauchy–Schwarz, the left-hand side is bounded by∑
a<b

(λ2a + λ2b)(|γa,b|2 + |γb,a|2),

which is clearly bounded by the right-hand side. □

In particular, the integral bound

∥Z(Φ, A)∥L1(M) ≤ Eϵ(Φ, A)

holds automatically; equivalently, under the identification (2.5), we have

M(Z(Φ, A)) = ∥Z(Φ, A)∥L1(M) ≤ Eϵ(Φ, A).

Next, we observe that Z(Φ, A) is an exact form: in particular, by combining (2.1) with the
Bianchi identity dAFA = 0, we see that

(2.7) Z(Φ, A) = 2d(β(Φ, A)),

where

(2.8) β(Φ, A) := ℜ(ΦFA).

A central ingredient in the proof of Theorem 1.2 is the simple observation that the integral of
this two-form 1

2πβ(Φ, A) over 2-cycles is approximately quantized where |Φ| ≈ 1. At the level
of pointwise estimates, this can be proved by comparing β(Φ, A) with the pullback Φ∗(dAS2) of
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the area element dAS2 in an arbitrary gauge as in [17, Section II.5], then applying the exterior
derivative to arrive at the gauge-invariant identity

Z(Φ, A) =
1

2
d
(
ℜ(Φ dAΦ ∧ dAΦ)

)
where |Φ| ≡ 1.

For a more gauge-invariant approach, one can instead relate β(Φ, A) to the curvature
two-form of a U(1)-bundle over the region {Φ ̸= 0}. Indeed, on the Euclidean 2-plane bundle
L→ {Φ ̸= 0} given by

Lp := {Φ(p)}⊥ ⊂ su(2),

note that the connection one-form A ∈ Ω1(M ; su(2)) induces a metric-compatible connection
∇⊥ on L via

∇⊥Ψ := dAΨ−
〈
dAΨ,

Φ

|Φ|

〉
Φ

|Φ|
for all Ψ ∈ Γ(L). The curvature F∇⊥ ∈ Ω2({Φ ̸= 0}, so(L)) of ∇⊥ is then encoded, up to a
sign depending on the choice of orientation, in a closed real-valued two-form on {Φ ̸= 0}, which
we denote by ω(Φ, A). With this notation in place, we record the following.

Lemma 2.4. On the set U := {Φ ̸= 0}, the curvature two-form ω = ω(Φ, A) for the bundle
L→ U is given by

(2.9) |Φ|ω(Φ, A) = 2β(Φ, A)− 1

2
|Φ|−2ℜ(Φ dAΦ ∧ dAΦ).

Proof. On U , first define ϕ := Φ
|Φ| , and observe that the desired identity (2.9) is equivalent to

ω(Φ, A) = 2β(ϕ,A)− 1

2
ℜ(ϕdAϕ ∧ dAϕ).

Next, since this is a local computation, we restrict our attention to a small ball B ⊂ U around
some arbitrary point in U , and make a change of gauge with respect to which ϕ ≡ i on B.

In such a gauge, write A = A1i+A2j+A3k for real-valued one-forms A1, A2, A3 ∈ Ω1(B),
and observe that

dAϕ = dAi = [A, i] = −2A2k+ 2A3j

and, by similar computations for dAj and dAk, we see that

∇⊥j = 2A1k, ∇⊥k = −2A1j.

In particular, fixing the orientation so that {j,k} is positively oriented in this gauge, it follows
that

ω(Φ, A) = 2dA1 = 2dℜ(ϕA).
Applying (2.2) and noting that dϕ = 0 in this gauge, we then deduce that

dℜ(ϕA) = β(ϕ,A)−ℜ(ϕA ∧A)
= β(ϕ,A) + ℜ(iA ∧A)
= β(ϕ,A)− 2A2 ∧A3.

On the other hand, we see that

ℜ(ϕdAϕ ∧ dAϕ) = −ℜ(i(−2A2k+ 2A3j) ∧ (−2A2k+ 2A3j))

= 8A2 ∧A3,
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so that

ω(Φ, A) = 2dℜ(ϕA) = 2β(ϕ,A)− 1

2
ℜ(ϕdAϕ ∧ dAϕ),

as claimed. □

Now, if S ⊂ U is any closed oriented surface in U = {Φ ̸= 0}, we observe that∫
S
ω(Φ, A) = 2πe(ι∗L),

where ι∗L→ S is the pullback bundle of L under the inclusion ι : S → U , and e(ι∗L) is its
Euler number. To see that this integral is in fact an integer multiple of 4π, note that L can be
characterized as the pullback bundle

L = ϕ∗(TS2)

of the tangent bundle TS2 under ϕ = Φ
|Φ| : U → S2 ⊂ su(2) although, in the convention of

Lemma 2.4, TS2 is endowed with the opposite of the canonical orientation. In particular, since
e(TS2) = 2 for the canonical orientation, it follows from the naturality of Euler classes under
pullback that

e(ι∗L) = −e([ϕ ◦ ι]∗TS2) = −2 deg(ϕ ◦ ι),
and therefore

(2.10)

∫
S

[
2|Φ|−1β(Φ, A)− 1

2
|Φ|−3ℜ(Φ dAΦ ∧ dAΦ)

]
=

∫
S
ω(Φ, A) = −4π deg(ϕ ◦ ι)

for any Φ :M → su(2) and any surface S ⊂ {Φ ̸= 0}.

3. Liminf Inequality

Before beginning the proof of Theorem 1.2, we briefly recall some relevant terminology from
geometric measure theory; see, e.g., [29] or [14] for details.

First, we denote by Dk(M) the space of k-currents on M , i.e., the space of continuous
linear functionals on Ωkc (M) with respect to the C∞

c topology, and we follow the Euclidean
convention that the mass M(T ) of a current T ∈ Dk(M) is given by

M(T ) := sup{⟨T, ω⟩ | ω ∈ Ωkc (M) with |ω| ≤ 1},
while the boundary ∂T ∈ Dk−1(M) is given by

⟨∂T, ζ⟩ := ⟨T, dζ⟩.
As discussed in the previous section, the three-forms Z(Φ, A) can be identified with currents

[Z(Φ, A)] ∈ Dn−3(M) via integration, satisfying

M([Z(Φ, A)]) ≤ Eϵ(Φ, A)

and

⟨∂[Z(Φ, A)], ζ⟩ =
∫
M
Z(Φ, A) ∧ dζ =

∫
M
d(Z(Φ, A) ∧ ζ) = 0

for any ζ ∈ Ω2(M) supported in the interior of M . Moreover, for any ζ ∈ Ωn−3(M), it follows
from Proposition 2.2 that

⟨[Z(Φ, A)], ζ⟩ ≤
∫
M

(
1

ϵ
|dAΦ|2 + ϵ|FA|2

)
|ζ|.
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By a standard application of the Banach–Alaoglu theorem (cf. [29, Lemma 26.14]), these
observations together immediately yield the following preliminary result.

Lemma 3.1. Under the hypotheses of Theorem 1.2, there exists an (n−3)-current T ∈ Dn−3(M)
such that, along a subsequence,

[Z(Φj , Aj)]⇀
∗ 4πT

as (n− 3)-currents, and T satifies

spt(∂T ) ⊂ ∂M

and

4π|T | ≤ lim(ϵ−1
j |dAjΦj |2 + ϵj |FAj |2) d volg;

in particular, 4πM(T ) ≤ lim infj→∞Eϵj (Φj , Aj).

Note that, away from ∂M , the current T in Lemma 3.1 is automatically normal in the sense
of [14]: that is, T and ∂T both have finite mass in every compact subset of the interior of M .
To prove Theorem 1.2, what remains is to show that the limit current T in Lemma 3.1 is an
integral (n− 3)-current in M \ ∂M , that is,

T (ω) =

∫
Σ
θ(x)⟨ω(x), ξ(x)⟩ dHn−3(x)

for some (n− 3)-rectifiable set Σ ⊂M , with θ : Σ → Z an Hn−3-measurable weight and ξ(x) a
volume form for TxΣ at Hn−3-a.e. x ∈ Σ.

Further, we observe that we can assume

(3.1) |Φj | ≤ 1

in the sequel: indeed, letting Φ̃j := Φj on {|Φj | ≤ 1} and Φ̃j :=
Φj

|Φj | on {|Φj | > 1}, we have

∥Φ̃j − Φj∥L2(M) ≤ ∥|Φj | − 1∥L2(M) = o(ϵ
1/2
j ),

giving in particular

∥β(Φ̃j , Aj)− β(Φj , Aj)∥L1(M) ≤ o(ϵ
1/2
j )∥FAj∥L2(M) = o(1),

and thus

(3.2) lim
j→∞

Z(Φ̃j , Aj) = lim
j→∞

Z(Φj , Aj).

Since ⟨ Φj

|Φj | , dAj

Φj

|Φj |⟩ = 0 we also have

Eϵj (Φ̃j , Aj) ≤ Eϵj (Φj , Aj),

and hence we can guarantee (3.1) by replacing Φj with Φ̃j (which can be slightly perturbed to
a smooth function, although Lipschitz regularity is certainly enough for the computations in
this section).

The remainder of this section is devoted to the proof of this integrality result, completing
the proof of Theorem 1.2. We start by reducing the general situtation to the three-dimensional
case by slicing, and then we prove it in three dimensions.
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3.1. Reduction to dimension 3.
Since integrality of the current T in Lemma 3.1 is a local property, by pulling back sections
and connections via arbitrary local parametrizations, we can replace M with the cube (−2, 2)n.
Writing any point x ∈ (−2, 2)n as x = (y, z), with y ∈ (−2, 2)n−3 and z ∈ (−2, 2)3, let

π : (−2, 2)n → (−2, 2)n−3, π(y, z) := y.

Given y ∈ (−2, 2)n−3 and a normal (n− 3)-current S in (−2, 2)n, we let Sy = ⟨S, π, y⟩ denote
its slice relative to the map π and the value y (in the sense of [14, Section 4.3]), so that Sy is
defined for a.e. y and is a normal 0-current in (−2, 2)3. Letting Tj =

1
4π [Z(Φj , Aj)], in the

setting of Lemma 3.1, we observe next that the operation of taking slices commutes with the
weak convergence Tj ⇀

∗ T .

Lemma 3.2. Under the assumptions of Lemma 3.1 with M = (−2, 2)n, after passing to a
further subsequence, we have the weak convergence

T yj ⇀
∗ T y

for almost every y ∈ (−2, 2)n−3.

Proof. Let χ ∈ C1
c (M), where now M = (−2, 2)n, and let T̃j := χTj , which we can view as a

normal current in Rn. Since T̃j and ∂T̃j have equibounded mass, classical compactness results
from geometric measure theory (see [14, Theorem 4.2.17]) imply that the weak convergence

T̃j ⇀
∗ T̃ := χT can be upgraded to convergence in flat norm

lim
j→∞

F(T̃j − T̃ ) = 0,

where we recall that

F(S) := sup{S(ω) | ω ∈ Ωmc (Rn) with max{∥ω∥C0 , ∥dω∥C0} ≤ 1}
= inf{M(S − ∂C) +M(C) | C ∈ Dn−2(Rn)}.

Now, by standard estimates for the slicing operation (see [14, Section 4.3.1]) we have∫
y∈(−2,2)n−3

F(Sy) ≤ F(S),

so that

lim
j→∞

∫
y∈(−2,2)n−3

F(T̃ yj − T̃ y) = 0.

Thus, up to a further subsequence, for almost every y ∈ (−2, 2)n−3 we have

T̃j ⇀
∗ T̃ .

Since χ was arbitrary, a standard argument implies the existence of a further subsequence such
that

T yj ⇀
∗ T y

for almost every y ∈ (−2, 2)n−3. □

To reduce the integrality question to the three-dimensional case, we make essential use of
the following result, due in various forms to White, Jerrard, and Ambrosio–Kirchheim.
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Proposition 3.3. [38, 18, 3] A normal k-current S in Rn is integral if and only if, for every
projection P onto a k-dimensional coordinate subspace of Rn, the slices ⟨S, P, y⟩ with respect to
the projection π : Rn → P are integral 0-currents for almost every y ∈ Rk.

To complete the proof that T is an integral (n− 3)-current in the situation of Lemma 3.1
with M = (−2, 2)n, it therefore suffices to show that the slices T y are integral 0-currents in
(−2, 2)3 for almost every y. On the other hand, letting Φyj (z) := Φj(y, z) and A

y
j (z) := (ιy)∗Aj ,

where ιy : (−2, 2)3 → (−2, 2)n is given by ιy(z) := (y, z), by Fatou’s lemma we have∫
(−2,2)n−3

(
lim inf
ϵ→0

∫
{y}×(−2,2)3

eϵ(Φj , Aj)

)
dy ≤ C.

Thus, for a.e. y ∈ (−2, 2)n−3, we can find a subsequence (depending on y, but not relabeled)
such that ∫

(−2,2)3
eϵ(Φ

y
j , A

y
j ) ≤ C(y) <∞.

Moreover, we clearly have T yj = [Z(Φyj , A
y
j )], where we identify Z(Φ

y
j , A

y
j ) with its dual 0-current

in R3 and, by Lemma 3.2, we know moreover that

T y = lim
j→∞

T yj

for almost every y as well. Hence, it is enough to show that 1
4πZ(Φ

y
j , A

y
j ) converges to an

integral 0-current in (−2, 2)3 (i.e., a finite linear combination of Dirac masses, with integer
coefficients). In the next section, we demonstrate the desired integrality of the limit current T
in the setting of Lemma 3.1 in dimension three, completing the proof of Theorem 1.2.

3.2. Liminf inequality: proof in dimension three.
Assume now that [−1, 1]3 ⊂M ⊂ R3; in the sequel, with a slight abuse of notation, we will
write Φϵ, Aϵ, and ϵ in place of Φj , Aj , and ϵj .

It is enough to show that Z(Φϵ, Aϵ) converges to (4π times) an integral cycle T along a
subsequence, on the smaller open set (−1, 1)3.

We first claim that a good change of gauge exists on sufficiently small cubes. The following
is a consequence of the classical result of Uhlenbeck [37, Theorem 2.1].

Proposition 3.4. There exists a small constant c0 > 0 with the following property: given a
smooth connection one-form A on a closed cube Q ⊂M (of any sidelength), if

∫
Q |FA|3/2 ≤ c0

then we can find σ ∈W 1,6(Q,Sp(1)) such that the gauge-changed one-form

Aσ = −(dσ)σ−1 + σAσ−1

satisfies
∥Aσ∥L3(Q) + ∥DAσ∥L3/2(Q) ≤ C∥FA∥L3/2(Q),

as well as
∥Aσ∥L6(Q) + ∥DAσ∥L2(Q) ≤ C∥FA∥L2(Q).

In our setting, it suffices to take cubes of sidelength c1ϵ, with c1 small enough depending on
the total energy: indeed, by Hölder’s inequality we then have∫

Q
|FAϵ |3/2 ≤

(∫
Q
|FAϵ |2

)3/4

|Q|1/4 ≤ ϵ−3/4Eϵ(Φϵ, Aϵ)
3/4(c1ϵ)

3/4 ≤ c0.
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Lemma 3.5. Dropping the subscript ϵ, there exists a section Φ̃ on M with

[|Φ̃|]C0,1/2(Q) ≤ Cϵ−1/2Eϵ(Φ, A)
1/2

on each cube Q of sidelength ϵ and dist(Q,R3 \M) ≥ ϵ, as well as

Eϵ(Φ̃, A) ≤ CEϵ(Φ, A)

and

∥Φ̃− Φ∥2L2(M) ≤ Cϵ3Eϵ(Φ, A).

Proof. In this proof, we let N := ⌈ 2
c1ϵ

⌉ and ℓ := 1
N , so that 2ℓ ≤ c1ϵ, as well as δ := ℓ/10,

which is comparable with ϵ. We first regularize Φ on the slab S := [−1, 1]× [−ℓ, ℓ]2 (actually,

on the slightly thinner one S̃ := [−1 + 2δ, 1− 2δ]× [−ℓ+ 2δ, ℓ− 2δ]2).
We cover S with 2N − 1 cubes Q1, . . . , Q2N−1 of sidelength 2ℓ, given by

Qj := [−1 + jℓ− ℓ,−1 + jℓ+ ℓ]× [−ℓ, ℓ]× [−ℓ, ℓ].
We apply the previous lemma for each j, finding a gauge transformation σj : Qj → Sp(1) such
that

∥Aσj∥L6(Qj) ≤ C∥FA∥L2(Qj).

Let λj :M → [0, δ] be given by

λj(x) := min{δ, dist(x,M \Qj)},
so that λj is 1-Lipschitz and

λj = δ on Q̃j ,

where Q̃j ⊂ Qj consists of all points with distance at least δ from ∂Qj . We also fix a smooth
function χ : R3 → [0,∞) supported in the ball B1/2(0) ⊂ R3, with

∫
R3 χ = 1, so that

|dλj(x)||y| ≤
1

2

for a.e. x ∈ M and y ∈ spt(χ). Note that this guarantees that the map x 7→ x+ λj(x)y is
bi-Lipschitz and equals the identity on M \Qj , for all y ∈ spt(χ).

We now let Φ′ be the new section obtained by considering all cubes Qj with j odd and
replacing Φ(x) with

Φ′(x) := σj(x)
−1

∫
B1/2

(σjΦ)(x+ λj(x)y)χ(y) dy

on Qj , leaving Φ unchanged onM \S (note that S is the disjoint union of such cubes, neglecting
their boundaries, where clearly Φ′ = Φ).

Using (3.1), on Qj we deduce the bound

∥d(σjΦ)∥L2(Qj) ≤ ∥dAΦ∥L2(Qj) + ∥Aσj∥L2(Qj) ≤ ∥dAΦ∥L2(Qj) + Cϵ∥FA∥L2(Qj),

since we have ∥Aσj∥L2(Qj) ≤ |Qj |1/3∥Aσj∥L6(Qj) by Hölder. Moreover, thanks to the fact that

x 7→ x+ λj(x)y is bi-Lipschitz and the convexity of the L2-norm, we have

∥d(σjΦ′)∥L2(Qj) ≤ C∥d(σjΦ)∥L2(Qj),

giving the gauge-invariant bound

∥dAΦ′∥L2(Qj) ≤ C∥dAΦ∥L2(Qj) + Cϵ∥FA∥L2(Qj),
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and thus

(3.3) Eϵ(Φ
′, A;S) ≤ CEϵ(Φ, A;S).

As for the distance in L2, it suffices to bound

x 7→ (σjΦ)(x+ λj(x)y)− (σjΦ)(x)

in L2 for each y ∈ spt(χ). To do this, we write

|(σjΦ)(x+ λj(x)y)− (σjΦ)(x)| ≤
∫ 1

0
|d(σjΦ)(x+ sλj(x)y)||λj(x)y| dy.

Since |λj(x)y| ≤ ϵ, using again the fact that x 7→ x+ sλj(x)y is bi-Lipschitz we get∫
Qj

|(σjΦ)(x+ λj(x)y)− (σjΦ)(x)|2 dx ≤ Cϵ2
∫
Qj

|d(σjΦ)|2 ≤ Cϵ3Eϵ(Φ, A;Qj).

In particular, summing over j we get the bound

(3.4) ∥Φ′ − Φ∥2L2(M) ≤ Cϵ3Eϵ(Φ, A;S).

Since λj = δ on Q̃j , a simple change of variables gives

|d(σjΦ′)|(x) ≤ Cϵ−3

∫
Qj

|d(σjΦ)| ≤ Cϵ−3/2∥d(σjΦ)∥L2(Qj) ≤ Cϵ−1Eϵ(Φ, A)
1/2

for x ∈ Q̃j (and j odd). In particular, in terms of the C0,1/2-seminorm we have

[σjΦ
′]C0,1/2(Q̃j)

≤ Cϵ−1/2Eϵ(Φ, A)
1/2

for j odd, and thus the same bound holds for |Φ′|, which is gauge-invariant.
We now repeat the procedure on the cubes Qj with j even, obtaining a new section Φ′′.

This section satisfies the same bounds (3.3) and (3.4), as well as

[σjΦ
′′]C0,1/2(Q̃j)

≤ Cϵ−1/2Eϵ(Φ, A)
1/2

for j = 2, 4, . . . , 2N − 2 even, and thus

[|Φ′′|]C0,1/2(Q̃j)
≤ Cϵ−1/2Eϵ(Φ, A)

1/2

for the same indices.
Letting S̃ := [−1 + 2δ, 1− 2δ]× [−ℓ+ 2δ, ℓ− 2δ]2, we claim that, in fact, the same holds also

on Q̃j ∩ S̃ for j odd; we focus on the case j ̸= 1, 2N − 1, since the endpoint case is analogous.
Let us fix j ∈ {3, . . . , 2N − 3}; it is enough to show Hölder continuity on

(Q̃j ∩ S̃) \ (Q̃j−1 ∪ Q̃j+1) ⊆ [−1 + jℓ− δ,−1 + jℓ+ δ]× [−ℓ+ 2δ, ℓ− 2δ]2.

We deal only with R := [−1 + jℓ− δ,−1 + jℓ]× [−ℓ+ 2δ, ℓ− 2δ]2, since the argument for the

second half is identical. We let Ψ := σjΦ
′, defined and Hölder continuous on Q̃j , and

σ : Qj−1 ∩Qj → Sp(1), σ := σj−1σ
−1
j ,

the change-of-gauge function. Note carefully that, by definition of λj−1, we have λj−1 ≤ δ and
x+ λj−1(x)y ∈ Qj−1 for x ∈ Qj−1 and y ∈ spt(χ), giving

x+ λj−1(x)y ∈ [jℓ− 2δ, jℓ]× [−ℓ+ δ, ℓ− δ]2 ⊆ Qj−1 ∩ Q̃j for all x ∈ R.
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By definition, for x ∈ R we have

(σjΦ
′′)(x) = σ(x)−1(σj−1Φ

′′)(x) = σ(x)−1

∫
B1

(σj−1Φ
′)(x+ λj−1(x)y)χ(y) dy,

and hence at these points we can write

(σjΦ
′′)(x) = σ(x)−1

∫
B1

(σΨ)(x+ λj−1(x)y)χ(y) dy.

Further, since on Qj−1 ∩Qj we have the identity

Aσj−1 = −(dσ)σ−1 + σAσjσ−1,

we can bound

∥dσ∥L6(Qj−1∩Qj) ≤ ∥Aσj−1∥L6(Qj−1) + ∥Aσj∥L6(Qj) ≤ C∥FA∥L2(Qj−1∪Qj).

Thus, by Morrey’s inequality, we obtain

[σ]C0,1/2(Qj−1∩Qj)
≤ C∥FA∥L2(Qj−1∪Qj) ≤ Cϵ−1/2Eϵ(Φ, A)

1/2.

Since Ψ satisfied the same bound on Q̃j , the same holds for the product σΨ on Qj−1 ∩ Q̃j .
Since x 7→ x+ λj−1(x)y is Lipschitz, the claim follows.

As a consequence, Φ′′ is Hölder continuous on the smaller slab S̃. Next, for j = 1, . . . , 2N −1,
we consider the translated slabs

Sj := [−1, 1]× [−1 + jℓ− ℓ,−1 + jℓ+ ℓ]× [−ℓ, ℓ],
whose union is [−1, 1]×[−1, 1]×[−ℓ, ℓ], and we perform the previous replacement simultaneously
for all odd indices j, obtaining a section which is Hölder continuous on each

S̃j := [−1 + 2δ, 1− 2δ]× [−1 + jℓ− ℓ+ 2δ,−1 + jℓ+ ℓ− 2δ]× [−ℓ+ 2δ, ℓ− 2δ],

and then for all the even indices, ending up with a section which is Hölder continuous on

[−1 + 3δ, 1− 3δ]× [−1 + 3δ, 1− 3δ]× [−ℓ+ 3δ, ℓ− 3δ],

satisfying the same integral bounds. Finally, we do the same for the third coordinate, obtaining
the desired section Φ̃, which is Hölder continuous on [−1 + 4δ, 1− 4δ]3. □

As a consequence, we get

∥β(Φ̃ϵ, Aϵ)− β(Φϵ, Aϵ)∥L1 ≤ ∥Φ̃ϵ − Φϵ∥L2∥FAϵ∥L2 ≤ CϵEϵ(Φϵ, Aϵ),

so that Z(Φϵ, Aϵ) has the same limit as Z(Φ̃ϵ, Aϵ), and we can replace Φ with Φ̃ in the sequel.
Now fix ℓ > 0 small, independent of ϵ. By a simple averaging argument, we can select a grid

of fixed sidelength ℓ in (−1 + ϵ, 1− ϵ)3, such that the 3-skeleton includes (−1 + 2ℓ, 1− 2ℓ)3 and
on the 2-skeleton S2 we have

(3.5)

∫
S2

eϵ(Φϵ, Aϵ) ≤
C

ℓ
,

∫
S2

(1− |Φϵ|)2 = o(ϵ/ℓ).

On each plane Σ ⊂ S2 we then have∫
Σ
|1− |Φϵ||2 + |d|Φϵ||2 ≤

Cϵ

ℓ

for ϵ small enough, which for each p ∈ (1,∞) gives

∥1− |Φϵ|∥2Lp(Σ) ≤ C(p)
ϵ

ℓ
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by Sobolev embedding. If we had |Φϵ| < 3
4 at some x ∈ Σ then, recalling that |Φϵ| is Hölder

continuous at scale ϵ, we would have |Φϵ| < 7
8 on a ball Bcϵ(x) ∩ Σ, where c depends also on

(an upper bound on) the energy; hence, for any fixed p ∈ (4,∞) we would get

∥1− |Φϵ|∥2Lp(Σ) ≥ c(p)ϵ4/p.

Hence, we would reach the inequality

ϵ4/p ≤ C(p)
ϵ

ℓ
,

which is impossible for ϵ small enough (as ℓ > 0 is fixed).
Thus, |Φϵ| ≥ 3

4 on the 2-skeleton S2. Calling xQ the center of each 3-face Q, we now define
the 0-current

Tϵ,ℓ :=
∑
Q

(∫
Q
Z(Φϵ, Aϵ)

)
δxQ .

The multiplicity of Tϵ,ℓ at each xQ equals∫
Q
Z(Φϵ, Aϵ) =

∫
∂Q

2β(Φϵ, Aϵ);

since |Φϵ| ≥ 3
4 on ∂Q, we observe that

|β(Φϵ, Aϵ)− |Φϵ|−1β(Φϵ, Aϵ)| ≤ C(1− |Φϵ|)|FAϵ |,
which together with (2.10) yields∣∣∣∣∫

Q
Z(Φϵ, Aϵ) + 4π deg(ϕϵ|∂Q)

∣∣∣∣ ≤ C

∫
∂Q

(1− |Φϵ|)|FAϵ |+ |dAϵΦϵ|2.

In particular, denoting by Sϵ,ℓ the integral current

Sϵ,ℓ :=
∑
Q

−deg(ϕϵ|∂Q)δxQ ,

it follows that

M(Tϵ,ℓ − 4πSϵ,ℓ) ≤ C

∫
S2

(1− |Φϵ|)|FAϵ |+ |dAϵΦϵ|2

≤ C

(∫
S2

(1− |Φϵ|)2

ϵ

)1/2(∫
S2

eϵ(Φϵ, Aϵ)

)1/2

+ Cϵ

∫
S2

eϵ(Φϵ, Aϵ),

by an application of the Cauchy–Schwarz inequality. By (3.5), we know moreover that the
right-hand side of the preceding estimate vanishes as ϵ→ 0, so that

(3.6) lim
ϵ→0

M(Tϵ,ℓ − 4πSϵ,ℓ) = 0.

Moreover, since

M(Tϵ,ℓ) =
∑
Q

∣∣∣ ∫
Q
Z(Φϵ, Aϵ)

∣∣∣ ≤ Eϵ(Φϵ, Aϵ) ≤ C

as ϵ→ 0, after passing to a further subsequence, we see that 1
4πTϵ,ℓ converges as ϵ→ 0 to a

limit Sℓ, which, by (3.6), must be integral. Moreover, since the mass M(Sℓ) ≤ C is bounded
independent of ℓ, we can pass to another subsequential limit Sℓ → S as ℓ → 0, with S an
integral current.
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Finally, letting Uℓ := (−1 + 2ℓ, 1− 2ℓ)3, for any ζ ∈ C1
c (Uℓ) we have∫

Uℓ

Z(Φϵ, Aϵ) ∧ ζ =
∑
Q

(∫
Q
Z(Φϵ, Aϵ)

)
ζ(xQ) +O(ℓ∥dζ∥C0(Uℓ))

= ⟨Tϵ,ℓ, ζ⟩+O(ℓ∥dζ∥C0(Uℓ)).

Letting T := 1
4π limϵ→0[Z(Φϵ, Aϵ)], we deduce that

∥T − Sℓ∥C1
c (Uℓ)∗ ≤ Cℓ

for all ℓ > 0, and therefore T = S is indeed an integral 0-current, as desired.

4. Limsup inequality

The aim of this section is to prove Theorem 1.4, the ‘lim sup’ part of our Γ-convergence
result. We begin with a useful computational lemma.

Proposition 4.1. Given an open set U ⊆Mn and a smooth unit section Φ : U → su(2) ⊂ H,
for an arbitrary α ∈ Ω1(U,R) the connection one-form

A :=
1

2
Φ−1 dΦ+ Φα = −1

2
Φ dΦ+ Φα

satisfies

dAΦ = 0, FA = −1

4
dΦ ∧ dΦ+ Φ dα.

Proof. Recall that, since Φ = −Φ, we have Φ2 = −ΦΦ = −1. As a consequence, Φ−1 = −Φ
and

(4.1) Φ dΦ = −dΦΦ.

Thus,

dAΦ = dΦ+ [A,Φ] = dΦ+AΦ− ΦA =
1

2
dΦ− 1

2
Φ dΦΦ =

1

2
(1 + Φ2) dΦ = 0

and, since Φα ∧ Φα = Φ2α ∧ α = 0, we also have

FA = dA+A ∧A = −1

2
dΦ ∧ dΦ+ d(Φα) +

1

4
Φ dΦ ∧ Φ dΦ− 1

2
(Φ dΦ ∧ Φα+Φα ∧ Φ dΦ).

Using (4.1), we obtain

−1

2
(Φ dΦ ∧ Φα+Φα ∧ Φ dΦ) = −dΦ ∧ α,

from which the conclusion follows. □

Next, recall from [17, Section IV.1] the standard Bogomolnyi–Prasad–Sommerfield (BPS)
monopole (Φ0, A0) of degree ∓1 on R3. Identifying R3 ∼= {Ri + Rj + Rk} and recalling
Remark 2.1, we have

Φ0(x) := ∓
(

1

r tanh(2r)
− 1

2r2

)
x,

and

A0(x) :=

(
1

r sinh(2r)
− 1

2r2

) 3∑
i=1

(x× ei) dxi,
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where x× ei denotes the vector product, and ei the usual coordinate vectors. This pair satisfies
the first order monopole equations

∗dA0Φ0 = ±FA0 ,

as well as

E1(Φ0, A0) = 4π.

As discussed on [17, p. 105], we then have the pointwise estimates

1− |Φ0(x)| =
1

2|x|
+O(e−4|x|)

and

|dA0Φ0|(x) = O(1/|x|2).

In particular, we can write

(4.2) Φ0(x) = ∓2r − tanh(2r)

2r tanh(2r)
Ψ(x),

where Ψ(x) := x
|x| is the singular unit section whose distributional Jacobian gives the Dirac

mass 4πδ0. This shows that Φ0 vanishes only at the origin and has degree ∓1 at infinity.
Furthermore, thanks to [17, p. 105], we know that (Φ0(x), A0(x)) is real analytic on R3. We
summarize in the following lemma the scaling properties of the BPS monopole of degree −1.

Lemma 4.2. The rescalings (ΦBPSϵ (x), ABPSϵ (x)) = (Φ0(x/ϵ), ϵ
−1A0(x/ϵ)) of the BPS mono-

pole satisfy

Eϵ(Φϵ, Aϵ) = 4π,

1− |Φϵ|(x) =
ϵ

2|x|
+O(e−4|x|/ϵ),

ϵ|dAϵΦϵ|(x) = ϵ3|FAϵ |(x) = O(ϵ2/|x|2),

and Φϵ(x) = |Φϵ(x)| x|x| .

4.1. Proof of Theorem 1.4: constructing a recovery sequence.
As before, let M be a compact, oriented manifold with boundary, of dimension n ≥ 3. By
standard polyhedral approximation theorems (see in particular [14, Theorem 4.2.22] and [26,
Proposition 4.2]), it is enough to prove Theorem 1.4 in the case where T is a polyhedral
(n − 3)-current, and we may assume moreover that T has multiplicity one on each face of
spt(T ) (see for instance [2, Proposition 8.6]).

Now, let P ∈ Zn−3(M,∂M ;Z) be a polyhedral (n− 3)-boundary in the relative sense for
(M,∂M) with multiplicity one on each face, with respect to some triangulation of M . In
particular, we assume that there exists a polyhedral (n− 2)-current N ∈ Pn−2(M ;Z) such that

P − ∂N = Q,

where spt(Q) ⊂ ∂M and P meets ∂M transversally. As the starting point for our construction
of a family of pairs (Φϵ, Aϵ) concentrating along P , we first recall the results of [1, Section 5],
and observe that they can be adapted to our setting.



26 DAVIDE PARISE, ALESSANDRO PIGATI, AND DANIEL STERN

Proposition 4.3. In the situation above, there exists a polyhedral set S of dimension
dim(S) ≤ n− 4 and a locally Lipschitz map v ∈ Liploc(M \ (P ∪ S);S2) such that

∗d(v∗(dAS2)) = 4πP

and

(4.3) |dv|(x) ≤ C

dist(x, P ∪ S)

for all x ∈M \ (P ∪ S).

Proof. When M is a domain in Rn and ∂N = P , this is precisely the content of [1, Theorem
5.10]. Moreover, those arguments carry over in a straightforward way to the case where M is a
closed Riemannian manifold and P = ∂N for some polyhedral (n− 2)-current N : indeed, note
that all of the local constructions in [1, Section 5] can be implemented verbatim on small balls
in M whose geometry is approximately Euclidean.

More generally, letM be a manifold with boundary, and let P be a multiplicity-one polyhedral
(n− 3)-current meeting ∂M transversally, such that spt(P − ∂N) ⊂ ∂M for some polyhedral
(n − 2)-current N in M . Note that we can replace the given metric g on M with another
metric g′ satisfying C−1g ≤ g′ ≤ Cg such that (M, g′) is isometric to ∂M × [0, δ] on a tubular
neighborhood of ∂M ; then double M across its boundary to get a closed manifold M carrying
an isometric reflection ρ :M →M exchanging M with its complement. Setting N = N + ρ∗N
and recalling that P meets ∂M transversally, observe next that ∂N = P + ρ∗P = P , since
Q + ρ∗Q = 0. We can then apply the construction from [1, Section 5] to obtain a map
v ∈ Liploc(M \ (P ∪ S);S2) satisfying

∗d(v∗(dAS2)) = 4πP

and

|dv(x)| ≤ C

dist(x, P ∪ S)
.

Restricting v to M ⊂M then gives the desired map. □

Now, fix an (n− 3)-face ∆ of P , and fix a small parameter δ > 0; as in [26, Section 4], we
consider the subset ∆δ ⊂ ∆ consisting of points a distance ≥ δ from the boundary and, for a
constant c > 0 to be chosen, identify the normal cδ-tubular neighborhood Vδ(∆) with ∆δ ×B3

cδ
by a normal exponential map which is almost an isometry for δ small. We can fix c so small
that these neighborhoods Vδ(∆) have disjoint closures.

For S as in Proposition 4.3, denote by K the union of S and the (n− 4)-skeleton of P , and
choose C such that

Bcδ(P ) \
⋃
∆

Vδ(∆) ⊂ BCδ(K).

By a modification of the proof of [1, Theorem 5.10], we can assume moreover that the map
v ∈ Liploc(M \ (P ∪ S), S2) agrees with the radial projection (x, y) → y/|y| on Vδ(∆).

With this in mind, let ρ(x) := distP∪S(x), and consider

Φϵ(x) :=

(
1

tanh(2ρ/ϵ)
− ϵ

2ρ

)
v.
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Then, on each Vδ(∆), set

Ãϵ(x) :=
1

ϵ

(
1

sinh(2ρ/ϵ)
− ϵ

2ρ

) 3∑
i=1

(v × ei) dxi,

so that (Φϵ, Ãϵ) matches the rescaled BPS monopole on the B3
cδ factor of Vδ(∆) ∼= ∆δ ×B3

cδ;

and on M \ (P ∪ S), define Bϵ := 1
2v

−1 dv as in Proposition 4.1 with α = 0, so that

dBϵv = 0

and

FBϵ = −1

4
dv ∧ dv.

Next, let χK be a cut-off vanishing on BCδ(K) and constantly equal to 1 on M \B(C+1)δ(K),

with |dχK | ≤ C/δ on the set B(C+1)δ(K), which has volume O(δ4). Let ψ be another cut-off
vanishing outside a cδ-neighborhood of P ∪ S and constantly equal to 1 on Bcδ/2(P ∪ S). Note
that Ãϵ is then well-defined on each component of spt(ψ) ∩ spt(χK) and Bϵ is well-defined on
spt(χK) ∩ spt(1− ψ). Defining

Aϵ := χK · [ψÃϵ + (1− ψ)Bϵ],

we claim that the following holds.

Lemma 4.4. Taking δ := ϵ3/4 in the preceding construction, the pair (Φϵ, Aϵ) above satisfies
an estimate of the form

Eϵ(Φϵ, Aϵ) ≤ 4πHn−3(P ) + Cϵ1/32,

where C is a constant depending on P ∪ S.

Before beginning the proof, we record a few elementary estimates that will be of use during
the proof.

Lemma 4.5. There is a constant C > 0 such that, for any t ∈ (0,∞), we have

(4.4)

∣∣∣∣ 1

tanh(t)
− 1

t

∣∣∣∣ ≤ 1

and

(4.5)

∣∣∣∣ 1

sinh(t)
− 1

t

∣∣∣∣ ≤ Cmin{t, 1/t},

as well as

(4.6)

∣∣∣∣ 1

sinh(t)2
− 1

t2

∣∣∣∣ ≤ Cmin{1, 1/t2}.

Proof of Lemma 4.4. We will show that most energy is contained in the region {χK ≡ 1}∩{ψ ≡
1}, where the pair coincides with cylinders over rescaled BPS monopoles.

To begin, write

dAϵΦϵ = (1− χK)dΦϵ + χK [ψdÃϵ
Φϵ + (1− ψ)dBϵΦϵ].

Since dBϵv = 0 on the support of 1− ψ by construction, we see that here

|dBϵΦϵ| =
∣∣∣∣d( 1

tanh(2ρ/ϵ)
− ϵ

2ρ

)∣∣∣∣ ≤ 2

ϵ

∣∣∣∣ ϵ2

(2ρ)2
− 1

sinh(2ρ/ϵ)2

∣∣∣∣ ≤ Cϵρ−2,
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and therefore

1

ϵ

∫
M
χK(1− ψ)|dBϵΦϵ|2 ≤ Cϵ

∫
M\Bδ/2(P∪S)

ρ−4 ≤ Cϵδ−1,

where C is a constant depending on P ∪ S. Moreover, we have

|dΦϵ| ≤
C

ϵ

∣∣∣∣ ϵ2

(2ρ)2
− 1

sinh(2ρ/ϵ)2

∣∣∣∣+ C

∣∣∣∣ 1

tanh(2ρ/ϵ)
− ϵ

2ρ

∣∣∣∣ ρ−1

≤ C

ϵ
min{1, ϵ2/ρ2}+ C/ρ

≤ Cmin{1/ϵ, 1/ρ},

where we used (4.3) to bound |dv|, and therefore∫
M

1

ϵ
(1− χK)|dΦϵ|2 ≤

∫
B(C+1)δ(K)

C

ϵρ2
≤ C

δ2

ϵ
,

where the last bound can be checked using the coarea formula and the fact that the level set
B(C+1)δ(K) ∩ {ρ = t} has area at most Cδt2.

Putting these estimates together, we see that

(4.7)

∫
M

1

ϵ
|dAϵΦϵ|2 ≤ (1 + C

√
ϵδ−1 + ϵ−1δ2)

1

ϵ

∫
M
(χKψ)

2|dÃϵ
Φϵ|2 + C[ϵδ−1 + ϵ−1δ2],

giving the desired behavior for δ = δϵ in the regime ϵ≪ δ ≪
√
ϵ.

For the curvature estimate, first note that

(4.8) |dBϵ|+ |Bϵ|2 ≤ C|dv|+ C|dv|2 ≤ Cρ−2,

where the last inequality follows from Proposition 4.3, and, after applying Lemma 4.5,

(4.9) |Ãϵ| ≤
C

ϵ
min{ρ/ϵ, ϵ/ρ}.

Expanding FAϵ pointwise and applying Cauchy-Schwarz gives an estimate of the form

|FAϵ | ≤ C|dχK |(ψ|Ãϵ|+ (1− ψ)|Bϵ|)

+ CχK |dψ|(|Ãϵ|+ |Bϵ|)
+ CχK(1− ψ)(|dBϵ|+ |Bϵ|2)

+ χKψ(1− ψ)|Ãϵ||Bϵ|+ |χ2
Kψ

2 − χKψ||Ãϵ|2 + χKψ|FÃϵ
|;

(4.10)

we will show that all terms but the last one on the right-hand side are o(ϵ−1/2) in L2. We
will analyze each term separately. Since |dχK | ≤ C/δ and dχK is supported on a (C + 1)δ-

neighborhood of K, we use the preceding estimates for Bϵ and Ãϵ to check directly that∫
M
ϵ|dχK |2(ψ2|Ãϵ|2 + (1− ψ)2|Bϵ|2) ≤

Cϵ

δ2

∫
B(C+1)δ(K)

(ϵ−2min{ρ/ϵ, ϵ/ρ}2 + Cδ−2)

≤C ϵ
δ
+ Cϵ ≤ C

ϵ

δ
,

where the first inequality follows form (4.8) and (4.9).
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Next, note that |dψ| is bounded by C
δ and supported in the annular region cδ/2 ≤ ρ ≤ cδ,

so that

|dψ|2(|Ãϵ|2 + |Bϵ|2) ≤
C

δ2
δ−2 = Cδ−4,

where we used again the bounds (4.8) and (4.9). Integrating then over spt(dψ), which has
volume of the order δ3, gives

ϵ

∫
M∩spt(dψ)

|dψ|2(|Ãϵ|2 + |Bϵ|2) ≤
Cϵ

δ
.

For the third line of (4.10), we have

χK(1− ψ)(|dBϵ|+ |Bϵ|2) ≤ C(1− ψ)ρ−2

and, since 1− ψ is supported on {ρ ≥ cδ/2}, integration gives

ϵ

∫
M
χ2
K(1− ψ)2(|dBϵ|+ |Bϵ|2)2 ≤ Cϵ

∫
{ρ≥cδ/2}

ρ−4 ≤ C
ϵ

δ
.

Finally, note that

|Ãϵ||Bϵ|+ |Ãϵ|2 ≤
C

ρ2
on {χK > 0, ψ ̸= 1},

so similarly, multiplying by ϵ and integrating, we get as before

ϵ

∫
{ψ ̸=1}

[χKψ(1− ψ)|Ãϵ||Bϵ|]2 ≤
Cϵ

δ
,

while

ϵ

∫
{ψ=1}

[|χ2
Kψ

2 − χKψ||Ãϵ|2]2 ≤ ϵ

∫
B(C+1)δ(K)

ϵ−4min{ρ/ϵ, ϵ/ρ}4 ≤ C
δ4

ϵ3
· δ

4

ϵ4
= C

δ8

ϵ7
.

Putting the preceding estimates together, we deduce that

(4.11) ϵ

∫
M

|FAϵ |2 ≤ (1 + C
√
ϵ/δ + δ8/ϵ7)ϵ

∫
M
χ2
Kψ

2|FÃϵ
|2 + C(ϵ/δ + δ8/ϵ7).

In particular, taking δ := ϵ15/16 and combining this estimate with (4.7), we see that

Eϵ(Φϵ, Aϵ) ≤ (1 + Cϵ1/32)

∫
M
χ2
Kψ

2

(
1

ϵ
|dÃϵ

Φϵ|2 + ϵ|FÃϵ
|2
)
+ Cϵ1/16.

By construction, the pair (Φϵ, Ãϵ) coincides on Vδ(∆) with the product of the ϵ-rescaled BPS
monopole on R3 and ∆, so we see that∫

M
χ2
Kψ

2

(
1

ϵ
|dÃϵ

Φϵ|2 + ϵ|FÃϵ
|2
)

≤ 4π
∑
∆

Hn−3(∆) + Cδ,

after applying Lemma 4.2, where the last error term comes from the fact that Vδ(∆) is almost
isometric to a product. Hence,

Eϵ(Φϵ, Aϵ) ≤ 4πHn−3(P ) + Cϵ1/32,

as claimed. □
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Remark 4.6. Moreover, note that the section Φϵ satisfies |Φϵ| ≤ 1 and

1− |Φϵ| =
ϵ

2ρ
− e−2ρ/ϵ

sinh(2ρ/ϵ)
≤ ϵ

2ρ
,

so that a simple application of the coarea formula yields the integral estimates∫
M
(1− |Φϵ|) ≤ Cϵ

and

(4.12)

∫
M
(1− |Φϵ|)2 ≤ Cϵ2,

and in fact

lim
r→0

lim sup
ϵ→0

∫
{ρ<r}

(1− |Φϵ|)2

ϵ2
≤ C0Hn−3(P )

for an absolute constant C0. Given η > 0 small, let φη : R → R smooth with φη(t) = 1 for
t ≤ 1− η, φη(t) = 1/t for t ≥ 1− η2, and φη ≤ 1 + 2η2, as well as |φ′

η| ≤ 2η. Then, taking

Φ̃ϵ := φη(|Φϵ|)Φϵ,

it is easy to check that Eϵ(Φ̃ϵ, Aϵ) ≤ (1 + Cη)Eϵ(Φϵ, Aϵ), as well as

lim sup
ϵ→0

∫
M

(1− |Φ̃ϵ|)2

ϵ2
≤ C ′

0Hn−3(P ),

since for any fixed r > 0 we have 1− |Φϵ| ≤ ϵ
2r on {ρ ≥ r}, and thus 1− |Φ̃ϵ| = 0 here, once

ϵ ≤ 2η2r. Finally, using (4.12), we can see that Z(Φ̃ϵ, Aϵ) has the same limit as Z(Φϵ, Aϵ), by
an argument entirely analogous to the one used to show (3.2). Hence, by a standard diagonal
argument, up to replacing (Φϵ, Aϵ) with a new pair, we can also guarantee that

lim sup
ϵ→0

∫
M

(1− |Φ̃ϵ|)2

ϵ2
≤ C ′

0Hn−3(P ).

We can now complete the proof of Theorem 1.4 in a few lines.

Proof of Theorem 1.4. As discussed before, given a relative integral (n− 3)-boundary T in
M , the results of [14, Section 4.2] imply the existence of a sequence of polyhedral relative
(n− 3)-boundaries Pj in M such that Pj → T in the flat topology and

lim
j→∞

M(Pj) = M(T ).

Without loss of generality, we can assume moreover that Pj has multiplicity one on each
(n− 3)-face, again by, for instance, [2, Proposition 8.6]. Then, for each Pj , Lemma 4.4 and

Remark 4.6 supply for each ϵ ∈ (0, ϵj) a pair (Φjϵ , A
j
ϵ) satisfying

Eϵ(Φ
j
ϵ , A

j
ϵ) ≤ 4πM(Pj) +

1

j
,

F(4πPj − Z(Φjϵ , A
j
ϵ)) ≤

1

j
,

and ∫
M

(1− |Φjϵ |)2

ϵ2
≤ CM(Pj).
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Setting (Φϵ, Aϵ) := (Φjϵ , A
j
ϵ) for ϵ ∈ [ϵj+1, ϵj), it then follows that the family (Φϵ, Aϵ) satisfies

the conclusions of Theorem 1.4.
□

5. Approximating the Plateau problem

In this section, we conclude with the proof of Theorem 1.6. Throughout, we assume without
loss of generality that M ⊂ N is a domain in the interior of a larger compact n-manifold
N , such that the nearest-point projection P : V → ∂M is well-defined and smooth on the
complement V := N \M . In this setting, we observe next that pairs (Φ, A) on M and V with
matching Dirichlet data can be glued continuously across ∂M after a change of gauge.

Lemma 5.1. Given a pair Φ ∈ C∞(M ; su(2)) and A ∈ Ω1(M ; su(2)) on M , and a pair
Φ′ ∈ C∞(V ; su(2)) and A′ ∈ Ω1(V ; su(2)) on V such that

ι∗∂M↪→M (Φ, A) = ι∗∂M↪→V (Φ
′, A′),

there exists a Lipschitz continuous pair (Φ̂, Â) on N such that (Φ̂, Â) agrees with (Φ, A) on M
and (Φ′, A′) on V after changes of gauge.

Proof. Since ι∗∂M (Φ, A) = ι∗∂M (Φ′, A′) by assumption, the result would be immediate, with
no gauge changes required, if we also had A(ν) = A′(ν) along ∂M , where ν is the outward
unit normal to ∂M . We claim that this can always be arranged after a change of gauge. In
particular, we can find smooth maps g :M → SU(2) and h : V → SU(2) with g = h = 1 on ∂M ,
such that the gauge-transformed pairs (Φg, Ag) and ((Φ′)h, (A′)h) satisfy Ag(ν) = (A′)h(ν) = 0

on ∂M , and can therefore be patched together to give a Lipschitz pair (Φ̂, Â) on N .
We briefly explain how to construct the desired map g : M → SU(2); the construction

of h : V → SU(2) is identical. Let U ⊂ M be a tubular neighborhood of ∂M on which the
nearest-point projection P : U → ∂M is well-defined and smooth, and fix a cut-off function
χ ∈ C∞

c (U) such that χ(x) = dist∂M (x) on a smaller tubular neighborhood of ∂M . In the
reference gauge, let ϕ : ∂M → su(2) be given by ϕ(x) := −⟨A(x), ν⟩, and define g :M → SU(2)
by the matrix exponential

g(x) := exp(χ(x)ϕ(P (x))).

Then g satisfies g = 1 on ∂M ∪ (M \ U), and

−∂g
∂ν

(x) =
∂

∂r
erϕ(P (x))

∣∣∣∣
r=0

= ϕ(x).

In particular, it follows that, on ∂M ,

∂g−1

∂ν
= −∂g

∂ν
= −⟨A(x), ν⟩,

and so, recalling throughout that g = 1 on ∂M , we have

⟨Ag, ν⟩ = ⟨A+ dg−1, ν⟩ = 0,

as desired. □

Now, fix Γn−4 ⊂ ∂M to be a smooth (n − 4)-dimensional submanifold of ∂M such that

[Γ] = 0 ∈ Hn−4(M ;Z). For technical reasons, it is useful to introduce the submanifold Γ̂ in V
given by

Γ̂ := P−1(Γ),
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where P : V → ∂M is the nearest-point projection.
In particular, observe that if S ∈ In−3(M ;Z) is any integral (n − 3)-current such that

∂S = Γ and [S] = 0 ∈ Hn−3(M,∂M ;Z), then

Ŝ := S + Γ̂ ∈ In−3(N ;Z)

defines a relative (n− 3)-boundary in the larger manifold N , for a suitable orientation of Γ̂. In

particular, we can apply Theorem 1.4 to the current Ŝ in N , to obtain the following.

Lemma 5.2. For any integral (n− 3)-current S in M with ∂S = Γ, there exists a family of
pairs ΦSϵ : N → su(2) and ASϵ ∈ Ω1(N ; su(2)) such that |ΦSϵ | ≤ 1,

Z(ΦSϵ , A
S
ϵ )⇀

∗ 4πŜ,

lim sup
ϵ→0

∫
M

(1− |ΦSϵ |)2

ϵ2
≤ CM(Ŝ),

and
lim
ϵ→0

Eϵ(Φ
S
ϵ , A

S
ϵ ) = 4πM(Ŝ).

Moreover, if S agrees with P−1(Γ) near ∂M in Lemma 5.2, thus meeting M transversally,
then the pairs (ΦSϵ , A

S
ϵ ) have no energy concentration along ∂M , and it follows in particular

that

(5.1) lim
ϵ→0

∥Z(ΦSϵ , ASϵ )− 4πΓ̂∥C1(V )∗ = 0

and

(5.2) lim
ϵ→0

Eϵ(Φ
S
ϵ , A

S
ϵ ;M) = 4πM(S).

Now, consider a sequence Sj ∈ In−3(M ;Z) satisfying ∂Sj = Γ and

M(Sj) < inf{M(S) | S ∈ In−3(M), ∂S = Γ}+ 1

j
.

Without loss of generality, we can assume moreover that each Sj meets ∂M transversally as
above, though of course we cannot enforce this in a uniform way as j → ∞ without some
convexity assumption on M . Applying Lemma 5.2 to the sequence Sj , it follows that there

exist ϵj > 0 and pairs (Φjϵ , A
j
ϵ) on N such that for ϵ < ϵj

(5.3) Eϵ(Φ
j
ϵ , A

j
ϵ) +

∫
N

(1− |Φjϵ |)2

ϵ2
≤ CM(Ŝj)

and, by (5.1) and (5.2),

(5.4) ∥Z(Φjϵ , Ajϵ) V − 4πΓ̂∥C1(N)∗ <
1

j
,

as well as

(5.5) Eϵ(Φ
j
ϵ , A

j
ϵ ;M) ≤ 4π inf{M(S) | S ∈ In−3(M), ∂S = Γ}+ 4π

j
.

Replacing ϵj with min{ϵ1, . . . , ϵj , 1j } if necessary, we can assume moreover that ϵj is a de-

creasing sequence with limj→∞ ϵj = 0. We then define the pairs Ψϵ ∈ C∞(∂M, su(2)),
Bϵ ∈ Ω1(∂M ; su(2)) by

(5.6) (Ψϵ, Bϵ) := ι∗∂M (Φjϵ , A
j
ϵ) for ϵ ∈ (ϵj , ϵj+1].
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We then assert that the conclusion of Theorem 1.6 holds for this choice of (Ψϵ, Bϵ).

Proposition 5.3. For (Ψϵ, Bϵ) given by (5.6) above, setting

αϵ(Ψϵ, Bϵ) := inf{Eϵ(Φ, A) | ι∗∂M (Φ, A) = (Ψϵ, Bϵ)},
we have

lim
ϵ→0

αϵ(Ψϵ, Bϵ) = 4π inf{M(T ) | T ∈ In−3(M ;Z) with ∂T = Γ},

and for any family of pairs (Φϵ, Aϵ) on M with

(5.7) ι∗∂M (Φϵ, Aϵ) = (Ψϵ, Bϵ) and Eϵ(Φϵ, Aϵ) ≤ αϵ(Ψϵ, Bϵ) + o(1),

there is a mass-minimizing extension T ∈ In−3(M ;Z) with ∂T = Γ such that Z(Φϵ, Aϵ)⇀
∗ 4πT

along a subsequence.

Proof. By construction, we note that the pairs (Ψϵ, Bϵ) admit smooth extensions (Φ′
ϵ, A

′
ϵ) =

(Φjϵ , A
j
ϵ) to N =M ∪ V satisfying

(5.8) Eϵ(Φ
′
ϵ, A

′
ϵ) +

∫
N

(1− |Φ′
ϵ|)2

ϵ2
≤ C,

(5.9) lim
ϵ→0

∥Z(Φ′
ϵ, A

′
ϵ) V − 4πΓ̂∥C1(N)∗ = 0

and
lim sup
ϵ→0

Eϵ(Φ
′
ϵ, A

′
ϵ;M) ≤ 4π inf{M(S) | S ∈ In−3(M), ∂S = Γ}.

Since αϵ(Ψϵ, Bϵ) ≤ Eϵ(Φ
′
ϵ, A

′
ϵ;M) by definition, it follows immediately that

lim sup
ϵ→0

αϵ(Ψϵ, Bϵ) ≤ 4π inf{M(T ) | T ∈ In−3(M ;Z) with ∂T = Γ}.

To complete the proof, it therefore suffices to show that any family (Φϵ, Aϵ) in M satisfying
(5.7) has Z(Φϵ, Aϵ)⇀

∗ 4πT subsequentially, where T is an integral (n− 3)-current in M with
∂T = Γ; indeed, it then follows from the a priori mass bound

4πM(T ) ≤ lim inf
ϵ→0

Eϵ(Φϵ, Aϵ)

≤ lim inf
ϵ→0

αϵ(Ψϵ, Bϵ)

≤ 4π inf{M(S) | S ∈ In−3(M ;Z) with ∂S = Γ}
that T is a mass-minimizing fill-in for Γ, of mass limϵ→0 αϵ(Ψϵ, Bϵ).

So, let (Φϵ, Aϵ) be any family satisfying (5.7), and suppose additionally that

(5.10) lim
ϵ→0

∫
M

(1− |Φϵ|)2

ϵ
= 0.

Applying Lemma 5.1 to the pairs (Φ′
ϵ, A

′
ϵ) on V and (Φϵ, Aϵ) on M , it follows from (5.8) and

(5.9) that (Φϵ, Aϵ) admits a Lipschitz extension (Φ̂ϵ, Âϵ) to the larger manifold N satisfying
the hypotheses of Theorem 1.2 on N , as well as

(5.11) lim
ϵ→0

∥Z(Φ̂ϵ, Âϵ) V − 4πΓ̂∥C1(N)∗ = 0.

Applying Theorem 1.2, it then follows that along a subsequence Z(Φ̂ϵ, Âϵ) converges to an

integral (n− 3)-current 4πT̂ in N with spt(∂T ) ⊆ ∂N . On the other hand, writing

Z(Φ̂ϵ, Âϵ) = Z(Φϵ, Aϵ) M + Z(Φ̂ϵ, Âϵ) V,
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it then follows from (5.11) that

4πT := lim
ϵ→0

Z(Φϵ, Aϵ) = 4π(T̂ − Γ̂).

In particular, we deduce that T is globally an integral (n− 3)-current on M satisfying ∂T = Γ,
as desired.

To complete the proof, it remains to show that any family satisfying (5.7) also satisfies
(5.10). To see this, first consider the case where Φϵ minimizes Φ 7→

∫
M |dAϵΦ|2 with respect to

the boundary condition Φ|∂M = Ψϵ. Note that, since Aϵ is fixed and smooth, this minimization
problem is well-posed, and yields a unique section Φϵ satisfying

d∗Aϵ
dAϵΦϵ = 0 in M,

which has |Φϵ| ≤ 1 since capping |Φϵ| at 1 can only decrease the energy. As a consequence, it
follows that

(5.12) d∗d(1− |Φϵ|2) = 2|dAϵΦϵ|2

and, setting

fϵ :=
1− |Φϵ|2√

ϵ
,

we find that

∥dfϵ∥2L2(M) ≤
C

ϵ

∫
M

|dAϵΦϵ|2 ≤ C

and

(5.13) ∥d∗dfϵ∥L1(M) ≤
C√
ϵ

∫
M

|dAϵΦϵ|2 ≤ C
√
ϵ.

Moreover, recalling (5.8) and writing

ξϵ :=
1− |Φ′

ϵ|2√
ϵ

,

we see that ξϵ − fϵ = 0 on ∂M and
∫
M |dξϵ|2 ≤ CEϵ(Φ

′
ϵ, A

′
ϵ) ≤ C, while (5.8) gives

∥ξϵ∥2L2(M) ≤ Cϵ.

Now, applying the Rellich compactness theorem to fϵ and fϵ−ξϵ, we see that, along subsequences,
fϵ has a strong L2 limit

f = lim
ϵ→0

fϵ,

which coincides with the L2 limit of fϵ − ξϵ ∈W 1,2
0 (M) thanks to the estimate that we have

for ∥ξϵ∥L2(M), so in particular f = 0 on ∂M . On the other hand, it follows from (5.13) that
d∗df = 0 in M , which together with the vanishing of f on ∂M forces f ≡ 0 on M . In other
words, ϵ−1/2(1− |Φϵ|2) converges strongly to 0 in L2(M), which is the same as (5.10) since
|Φϵ| ≤ 1.

Now, for any family (Φϵ, Aϵ) satisfying (5.7), let (Φminϵ , Aϵ) be the family obtained by
replacing Φϵ with the minimizer for Φ 7→

∫
M |dAϵΦ|2 with the same boundary data. Then we

see that

αϵ(Ψϵ, Bϵ) ≤ Eϵ(Φ
min
ϵ , Aϵ) ≤ Eϵ(Φϵ, Aϵ) ≤ αϵ(Ψϵ, Bϵ) + o(1),
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and since d∗Aϵ
dAϵΦ

min
ϵ = 0 while Φϵ − Φminϵ = 0 on ∂M , we deduce that

1

ϵ

∫
M

|dAϵ(Φϵ − Φminϵ )|2 = 1

ϵ

∫
M

|dAϵΦϵ|2 − |dAϵΦ
min
ϵ |2

= Eϵ(Φϵ, Aϵ)− Eϵ(Φ
min
ϵ , Aϵ)

→ 0

as ϵ → 0. In particular, since Φminϵ = Φϵ on ∂M and |d|Φminϵ − Φϵ|| ≤ |dAϵ(Φ
min
ϵ − Φϵ)|, it

follows that
|Φϵ − Φminϵ |√

ϵ
→ 0

in W 1,2(M) as ϵ→ 0, and consequently

lim
ϵ→0

1− |Φϵ|√
ϵ

= lim
ϵ→0

1− |Φminϵ |√
ϵ

= 0

in L2(M). This confirms (5.10) for any family satisfying (5.7), completing the proof. □
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